
On A Parameterized Theory of Dynamic Logic for Operationally-based
Programs

YUANRUI ZHANG, College of Software, Nanjing University of Aeronautics and Astronautics, China

Applying dynamic logics to program verifications is a challenge, because their axiomatic rules for regular expressions can be difficult to

be adapted to different program models. We present a novel dynamic logic, called DL𝔭, which supports reasoning based on programs’

operational semantics. For those programs whose transitional behaviours are their standard or natural semantics, DL𝔭 makes their

verifications easier since one can directly apply the program transitions for reasoning, without the need of re-designing and validating

new rules as in most other dynamic logics. DL𝔭 is parametric. It provides a model-independent framework consisting of a relatively

small set of inference rules, which depends on a given set of trustworthy rules for the operational semantics. These features of DL𝔭 let

multiple models easily compared in its framework and makes it compatible with existing dynamic-logic theories. DL𝔭 supports cyclic

reasoning, providing an incremental derivation process for recursive programs, making it more convenient to reason about without

prior program transformations. We analyze and prove the soundness and completeness of DL𝔭 under certain conditions. Several case

studies illustrate the features of DL𝔭 and fully demonstrate its potential usage.

CCS Concepts: • Theory of computation→Modal and temporal logics; Hoare logic; Logic and verification; Proof theory.

Additional Key Words and Phrases: Dynamic Logic, Program Deduction, Verification Framework, Cyclic Proof, Operational Semantics,

Symbolic Execution

ACM Reference Format:
Yuanrui Zhang. 2018. On A Parameterized Theory of Dynamic Logic for Operationally-based Programs. In Proceedings of Make sure to

enter the correct conference title from your rights confirmation emai (Conference acronym ’XX). ACM, New York, NY, USA, 39 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

Dynamic logic [29] has proven to be a valuable program logic for specifying and reasoning about different types of

programs. As a “multi-modal” logic that integrates both programs and formulas into a single form, it is more expressive

than traditional Hoare logic [31] (cf. [4]). Dynamic logic has been successfully applied to domains such as process

algebras [8], programming languages [7], synchronous systems [62, 63], hybrid systems [44, 45] and probabilistic

systems [35, 43]. These theories have inspired the development of related verification tools for safety-critical systems,

such as KIV [50], KeY [54], KeYmaera [46], and the tools developed in [19, 63]. Recent work in dynamic logic features

a variety of extensions designed to tackle modern problems, including guaranteeing the correctness of blockchain

protocols [32], formalizing hyper-properties [25], and verifying quantum computations [19, 58]. It also has attracted

attention as a promising framework for incorrectness reasoning, as explored recently in [42, 64].

Author’s Contact Information: Yuanrui Zhang, yuanruizhang@nuaa.edu.cn, College of Software, Nanjing University of Aeronautics and Astronautics,

Nanjing, Jiangsu, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

ar
X

iv
:2

60
2.

09
30

7v
1

 [
cs

.L
O

]
 1

0
Fe

b
20

26

HTTPS://ORCID.ORG/0000-0002-0685-6905
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-0685-6905
https://arxiv.org/abs/2602.09307v1

2 Y. Zhang

The theories of most dynamic logics, as well as Hoare-style logics, are built up based on the denotational semantics

of programs: The behaviour of a program is interpreted as a mathematical object (e.g. a set of traces), and a set of

inference rules are constructed to match this object. Adapting these theories to other programs can be difficult. This

is true especially for the programming languages such as Java, C and Esterel [11], whose semantics is very complex.

Building logic theories for them requires carefully designing a large set of rules specific in their program domains.

Moreover, these rules are often error prone, thus requiring validation of their soundness (and even completeness),

which can also be costly. For example, in KeY [54], to apply first-order dynamic logic [49] (FODL) to the verification of

Java programs, more than 500 inference rules are proposed for the primitives of Java (cf. [41]). Their correctness is hard

to be guaranteed. Another example is that the tool Verifiable C [5] spends nearly 40,000 lines of Rocq code to define

and validate its logic theory for C based on separation logic [51].

Another main issue is that to reason about some types of programs, one has to first transform them into some sorts

of “standard forms”, in order to apply suitable axiomatic rules. These beforehand transformations are unnecessary and

can be expensive. And they usually mean breaking the original program structures and thus can cause loss of program

information. A typical example is imperative synchronous programming languages such as Esterel [11] or Quartz [55].

In [24], it shows that how a synchronous program must be transformed into a so-called “STA program” in order to

apply the right Hoare-logic rules to it.

Different from denotational semantics, structural operational semantics [47] describes how a program is transitioned

to another program under some configuration. It is the standard semantics for concurrent models, such as CCS [38]

and 𝜋-calculus [39]. For executable programs such as those mentioned above, providing an operational semantics is

straightforward, since their executions are intended to directly transform program configurations. For this reason, in

most cases, the operational semantics can be trusted as given, without additional validations (cf., e.g., [14, 21]).

In this paper, we propose a dynamic-logic-based theory aimed for easing the reasoning of those programs whose

operational semantics is in their nature. We propose a so-called parameterized dynamic logic, abbreviated as DL𝔭 1
.

It supports a directly reasoning based on operational semantics. Unlike previous work such as [8, 9] which focus on

particular calculi, our framework is parametric and can be adapted to arbitrary programs and formulas. We present a

proof system for DL𝔭 based on a cyclic proof approach (cf. [16]). It provides a set of “kernel rules” for deriving DL𝔭

formulas, accompanied with an assumed set of rules for programs’ transitional behaviours. We study and prove the

soundness and completeness of DL𝔭 under a general setting.

Compared to the traditional approaches based on dynamic logics, DL𝔭 has several advantages: (1) For those programs

for which the operational semantics is easy to obtain and can be trusted, it reduces the burden of the target-model

adaptations and consistency validations for unreliable rules. Compared to the previous work (like [7]), our set of “kernel

rules” is very small. (2) Its parameterization of formulas provides a model-independent framework, in which different

program theories can be easily embedded through a lifting process, and multiple models can be easily compared. (3)

Its support of cyclic reasoning is a natural solution for infinite symbolic executions caused by recursive programs,

which also allows an incremental derivation process by avoiding prior program transformations for certain types of

“non-standard” program models.

Previous work mostly related to ours have addressed this issue in different mathematical logics or theories (e.g. [2,

17, 30, 36, 40, 52, 53, 56, 60], see Section 8 for a detailed comparison). Except a few [2, 30, 60], most of them has not yet

1
To avoid the conflict with the famous Propositional Dynamic Logic (PDL) [23]

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 3

concerned with an efficient logical calculus for deriving dynamic-logic formulas. To our best knowledge, DL𝔭 is the first

dynamic logic to provide a cyclic verification framework for direct operationally-based reasoning of different programs.

This paper is a non-trivial extension of the previous work [61], from which we take an entire different method to

build up the theory of DL𝔭 that is based on Kripke structures and is independent from explicit signatures. In this work,

we further make a full analysis of the soundness and completeness of DL𝔭, as well as a much richer cases analysis for

different features of DL𝔭.

2 An Overview

In dynamic logic, a dynamic formula is of the form: [𝛼]𝜙 (cf. [29]), where [·] is a modal operator, 𝛼 is a program

model (or simply “program”), 𝜙 is a logical formula. Intuitively, it means that after the terminations of all executions of

program 𝛼 , formula 𝜙 holds. When 𝛼 is deterministic, formula 𝜙 → [𝛼]𝜓 exactly captures the partial correctness of

the triple {𝜙}𝛼{𝜓 } in Hoare-style logics (e.g. [31, 51]). 𝜙 → ⟨𝛼⟩𝜓 captures the total correctness of {𝜙}𝛼{𝜓 }, with ⟨·⟩
the dual modal operator of [·]. ⟨𝛼⟩𝜓 is defined such that ⟨𝛼⟩𝜓 = ¬[𝛼]¬𝜓 , meaning that there exists an execution of 𝛼

satisfying that it terminates and after its termination, formula𝜓 holds. As a combination of both programs and formulas,

a dynamic formula allows multiple and nested modalities in forms like [𝛼]𝜙 → ⟨𝛽⟩𝜓 , [𝛼]⟨𝛽⟩𝜙 , [𝛼] (𝜙 → ⟨𝛽⟩𝜓), etc.,
making it strictly more expressive than Hoare logic (cf. [4]).

The rest of this section gives an outline of the main work on DL𝔭, focusing on the main ideas illustrated through

examples. They are introduced in details in the following sections of this paper.

2.1 Labeling and Parameterization of Dynamic Logic

In order to directly reason about programs via their operational semantics, in DL𝔭, we introduce a “label”𝜎 (Definition 4.8)

to capture explicit program structures as the current program configurations for symbolic executions. 𝜎 attaches a

dynamic formula [𝛼]𝜙 , yielding a labeled formula of the form 𝜎 : [𝛼]𝜙 . Intuitively, it means that under configuration 𝜎 ,

program 𝛼 can be executed and formula 𝜙 holds after all terminating executions of 𝛼 . The introduction of labels allows

us to derive labeled formulas 𝜎 : [𝛼]𝜙 by the following program transitions:

(𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′),

using inference rules conceptually explained as the form:

𝜎 ′ : [𝛼 ′]𝜙 , for all (𝛼 ′, 𝜎 ′) such that (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′)
𝜎 : [𝛼]𝜙

([𝛼]) .

These rules (corresponding to the rules ([𝛼]𝑅) and ([𝛼]𝐿) in Table 2) reduce the deduction of 𝜎 : [𝛼]𝜙 to the deductions

of all successor formulas 𝜎 ′ : [𝛼 ′]𝜙 corresponding to the one-step program transitions.

Due to the universal form of program transitions, this framework applies for arbitrary program models and configu-

rations. Consequently, in a labeled formula 𝜎 : [𝛼]𝜙 of DL𝔭, we parameterize the program 𝛼 , the logical formula 𝜙 and

the label 𝜎 , to allow them to have any algebraic structures. 𝜎 : [𝛼]𝜙 turns out to be a more general form than [𝛼]𝜙 .
When 𝜎 is “free” (cf. Definition 5.8) w.r.t. [𝛼]𝜙 , 𝜎 : [𝛼]𝜙 has the same meaning as [𝛼]𝜙 .

Consider a formula 𝜙1 =𝑑𝑓 (𝑥 ≥ 0 → [𝑥 := 𝑥 + 1]𝑥 > 0) in FODL [49], where 𝑥 is a variable ranging over integers Z.

Intuitively, formula 𝜙1 means that if 𝑥 ≥ 0 holds, then 𝑥 > 0 holds after assigning the expression 𝑥 + 1 to 𝑥 . In FODL, to

derive 𝜙1, we apply the assignment rule:

𝜙 [𝑒/𝑥]
[𝑥 := 𝑒]𝜙

(𝑥 :=𝑒)

Manuscript submitted to ACM

4 Y. Zhang

on the part [𝑥 := 𝑥 + 1]𝑥 > 0. It substitutes 𝑥 of 𝑥 > 0 with 𝑥 + 1, yielding expression 𝑥 + 1 > 0. After the derivation we

obtain formula 𝜙 ′
1
=𝑑𝑓 (𝑥 ≥ 0 → 𝑥 + 1 > 0), which is true for any 𝑥 ∈ Z.

In DL𝔭, on the other hand, we can express 𝜙1 as an equivalent labeled formula: 𝜓1 =𝑑𝑓 (𝑡 ≥ 0 → {𝑥 ↦→ 𝑡} : [𝑥 :=

𝑥 + 1]𝑥 > 0), where the label {𝑥 ↦→ 𝑡} means that variable 𝑥 stores value 𝑡 (with 𝑡 a fresh variable). With the program

configurations explicitly showing up, to derive formula𝜓1, we instead directly apply the above rule ([𝛼]) on the part

{𝑥 ↦→ 𝑡} : [𝑥 := 𝑥 + 1]𝑥 > 0 according to the program transition

(𝑥 := 𝑥 + 1, {𝑥 ↦→ 𝑡}) −→ (↓, {𝑥 ↦→ 𝑡 + 1}), (𝑜𝑝 𝑥 := 𝑒)

which assigns the value 𝑡 + 1 to 𝑥 afterwards. Here ↓ indicates a program termination (cf. Definition 4.1). After the

derivation, we obtain the formula 𝜓 ′
1
=𝑑𝑓 (𝑡 ≥ 0 → {𝑥 ↦→ 𝑡 + 1} : 𝑥 > 0), where formula {𝑥 ↦→ 𝑡 + 1} : 𝑥 > 0

exactly means 𝑡 + 1 > 0 if we replace 𝑥 with its current value 𝑡 + 1 in formula 𝑥 > 0. So from𝜓 ′
1
, we obtain formula

𝑡 ≥ 0 → 𝑡 + 1 > 0, which is exactly formula 𝜙 ′
1
(modulo free-variable renaming).

From this example, we see that the above rule ([𝛼]) can be directly applied to other languages (by just choosing

a different set of program transitions) while rule (𝑜𝑝 𝑥 := 𝑒) may not. It cannot be applied to, e.g., a Java statement

𝑥 := 𝑛𝑒𝑤 𝐶 (...), which creates a new object of class 𝐶 (cf. [7]). Throughout this paper (from Example 4.4 - 5.2, in

Section 6.1 and 6.3), we show that how DL𝔭 can be adapted to different theories of programs through two instantiations

of DL𝔭: DL𝔭-WP and DL𝔭-FODL. Section 6.3 also displays the capability of DL𝔭 to derive multiple program models in a

single framework.

Section 6.4 and Appendix C further give two instantiations: DL𝔭-PL and DL𝔭-SP separately to show that in DL𝔭 not

only static properties (i.e. the properties holding on a state) can be expressed, but also more complex properties, like

temporal properties and spatial properties.

The entire process of labeling and parameterization is fully introduced in Section 4. In Section 5.3, a proof system

𝑃𝑟dlp for DL𝔭 is built.

2.2 Lifting Process and Compatibility of DL𝔭

As a dynamic logic extended with the extra structure labels, DL𝔭 is compatible with the existing theories of dynamic

logics in the sense that every inference rule for non-labeled dynamic formulas can be lifted as a rule for their la-

beled counterparts in DL𝔭. Section 5.5 discusses this technique in detail, where we introduce a notion called “free

labels” (Definition 5.8), and show that attaching a free label to a formula does not affect the validity of this formula

(Theorem 5.10).

For instance, from the rule (𝑜𝑝 𝑥 := 𝑒) above, one can obtain a sound lifted rule by attaching to each formula the

label {𝑥 ↦→ 𝑡}:
{𝑥 ↦→ 𝑡} : 𝜙 [𝑥/𝑒]
{𝑥 ↦→ 𝑡} : [𝑥 := 𝑒]𝜙

(lf (𝑥 :=𝑒))
.

{𝑥 ↦→ 𝑡} is free as 𝑡 is a fresh variable. Trivially, replacing any free occurrence of variable 𝑥 with variable 𝑡 in the

formulas [𝑥 := 𝑒]𝜙 and 𝜙 [𝑥/𝑒] does not change their meanings. From the formula 𝜓1 above, by applying the rule

(lf (𝑥 := 𝑒)) on the part {𝑥 ↦→ 𝑡} : [𝑥 := 𝑥 + 1]𝑥 > 0, we obtain the formula𝜓 ′′
1
=𝑑𝑓 𝑡 ≥ 0 → {𝑥 ↦→ 𝑡} : 𝑥 + 1 > 0. It is

just𝜓 ′
1
we have seen above if we replace 𝑥 of 𝑥 + 1 > 0 with its current value 𝑡 .

Lifting process provides a type of flexibility by directly making use of the rules special in different domains. In

Section 6.2, we illustrate in detail how this technique can be beneficial during derivations.

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 5

2.3 Cyclic Reasoning of DL𝔭 Formulas

In an ordinary deductive procedure we usually expect a finite proof tree. However, in the proof system 𝑃𝑟dlp of DL𝔭, a

branch of a proof tree does not always terminate, because the process of symbolically executing a program via rule

([𝛼]𝑅) or/and rule ([𝛼]𝐿) might not stop. This is well-known when a program has an explicit/implicit loop structure

that may run infinitely. For example, in the instantiated theory DL𝔭-WP of DL𝔭 (cf. Example 4.4 - 5.2), a while program

𝑊 =𝑑𝑓 while true do 𝑥 := 𝑥 + 1 end

proceeds infinitely as the following program transitions:

(𝑊, {𝑥 ↦→ 0}) −→ (𝑊, {𝑥 ↦→ 1}) −→

This yields the following infinite derivation branch in DL𝔭 when deriving, for example, a formula {𝑥 ↦→ 1} : [𝑊]𝜙 :
...

{𝑥 ↦→ 𝑛} : [𝑊]𝜙
...
.
.
.
....

{𝑥 ↦→ 2} : [𝑊]𝜙
([𝛼])

{𝑥 ↦→ 1} : [𝑊]𝜙
([𝛼])

.

To solve this problem, we propose a cyclic proof system for DL𝔭 (Section 5.4). Cyclic proof approach (cf. [16]) is

a technique to admit a certain type of infinite deductions, called “cyclic proofs” (cf. Section 5.2). A cyclic proof is a

finite proof tree augmented with some non-terminating leaf nodes, called “buds”, which are identical to some of their

ancestors. Call a bud and one of its identical ancestors a “back-link”.

We propose a cyclic derivation approach special for DL𝔭. This mainly consists of the following two steps.

In the first step, we construct a cyclic structure by identifying suitable buds and back-links, where the most critical

work is to design the substitution rule (Sub) of labels (Definition 4.12). For example, by performing the substitution

rule (Sub) given in Section 6.1 on the labels {𝑥 ↦→ 1} and {𝑥 ↦→ 𝑡 + 1}, we can obtain a cyclic derivation for the formula

{𝑥 ↦→ 1} : [𝑊]𝜙 on the left below:

2 : {𝑥 ↦→ 𝑡} : [𝑊]𝜙
{𝑥 ↦→ 𝑡 + 1} : [𝑊]𝜙}

(Sub)

1 : {𝑥 ↦→ 𝑡} : [𝑊]𝜙
([𝛼])

{𝑥 ↦→ 1} : [𝑊]𝜙
(Sub)

,

{𝑥 ↦→ 𝑡} : ⟨𝑊 ⟩𝜙
{𝑥 ↦→ 𝑡 + 1} : ⟨𝑊 ⟩𝜙}

(Sub)

{𝑥 ↦→ 𝑡} : ⟨𝑊 ⟩𝜙
([𝛼])

{𝑥 ↦→ 1} : ⟨𝑊 ⟩𝜙
(Sub)

where node 2 is a bud and it back-links to node 1. 𝑡 is a fresh variable w.r.t. 𝑥 ,𝑊 and 𝜙 . The label {𝑥 ↦→ 1} equals to
{𝑥 ↦→ 𝑡}[1/𝑡] (i.e. the label obtained by substituting 𝑡 with 1) and the label {𝑥 ↦→ 𝑡 + 1} equals to {𝑥 ↦→ 𝑡}[𝑡 + 1/𝑡] (i.e.
the label obtained by substituting 𝑡 with expression 𝑡 + 1).

However, not all cyclic structures are cyclic proofs. Consider the cyclic derivation on the above right for formula

{𝑥 ↦→ 1} : ⟨𝑊 ⟩𝜙 . According to the semantics of modality ⟨·⟩ (cf. Section 4.1), {𝑥 ↦→ 1} : ⟨𝑊 ⟩𝜙 is invalid for any formula

𝜙 because𝑊 never terminates. Therefore, in the second step, we need to check whether these cyclic structures are

legal cyclic proofs, where the key step is to define suitable “progressive derivation traces” special for system 𝑃𝑟dlp

(Definition 5.5).

We give two examples in Section 6.1 and Appendix B respectively to show how cyclic reasoning in DL𝔭 can be

carried out and how we can benefit from the incremental reasoning of recursive programs by cyclic graphs. Especially,

Manuscript submitted to ACM

6 Y. Zhang

the example given in Appendix B is an Esterel program, from which we can see that how cyclic reasoning based on

operational semantics can prevent extra prior program transformations in synchronous languages.

2.4 Soundness and Completeness of DL𝔭

We analyze and prove the soundness and completeness of DL𝔭 w.r.t. arbitrary programs and formulas under certain

restriction conditions (Section 7).

The soundness of DL𝔭 states that a cyclic proof always leads to a valid conclusion. In Section 7.1, we prove it under a

condition (Definition 7.2) that restricts how a program can terminate. Even though, the types of restricted programs is

still very rich, enough to include all deterministic programming languages (cf. Section 7.1).

The idea of proving the soundness is by contradiction (cf. [15]). We assume the conclusion, e.g. {𝑥 ↦→ 1} : [𝑊]𝜙 ,
is invalid, then it leads a sequence of invalid formulas in some proof branch, e.g. {𝑥 ↦→ 1} : [𝑊]𝜙 , {𝑥 ↦→ 𝑡} : [𝑊]𝜙 ,
{𝑥 ↦→ 𝑡 + 1} : [𝑊]𝜙 ,... in the above derivation. This sequence of invalid formulas then causes the violation of a

well-founded set (Definition 7.4) of a type of metrics (Definition 7.8) that relate these invalid formulas. More details is

given in Section 7.1.

The completeness of DL𝔭 states that for any valid labeled dynamic formula, there is a cyclic proof for it. We prove the

completeness of DL𝔭 under a sufficient assumption about the so-called “loop programs” (Definition 7.13, 7.14). The main

idea and the details of the proof are given in Section 7.2 and Appendix A. This completeness result is useful because the

restriction condition is general: any instantiation of DL𝔭 is complete once its program models satisfy this condition.

2.5 Main Contributions & Content Structure

The main contributions of this paper can be summarized as follows:

• We define the syntax and semantics of DLp formulas.

• We construct a labeled proof system and develop a lifting process for DL𝔭.

• We propose a cyclic proof approach tailored for DL𝔭.

• We analyze and prove the soundness and completeness of DL𝔭 under certain conditions.

The rest of the paper is organized as follows. Section 3 gives a brief introduction to PDL and FODL, necessary for

understanding the main content. In Section 4, we define the syntax and semantics of DL𝔭. In Section 5, we propose

a cyclic proof system for DL𝔭. In Section 6, we analyze some case studies. Section 7 analyzes the soundness and

completeness of DL𝔭. Section 8 introduces related work, while Section 9 makes a conclusion and discusses about future

work.

3 Prerequisites : PDL & FODL

In propositional dynamic logic (PDL) [23], the syntax of a formula 𝜙 is given by simultaneous inductions on both

programs and formulas as follows in BNF form:

𝛼 =𝑑𝑓 𝑎 | 𝜙? | 𝛼 ;𝛼 | 𝛼 ∪𝛼 | 𝛼∗,

𝜙 =𝑑𝑓 𝑝 | ¬𝜙 | 𝜙 ∧ 𝜙 | [𝛼]𝜙.

In the above definition, 𝛼 is a regular expression with tests, often called a regular program. 𝑎 ∈ 𝐴 is an atomic action of

a symbolic set 𝐴. 𝜙? is a test. If 𝜙 is true, then the program proceeds, otherwise, the program halts; 𝛼 ; 𝛽 is a sequential

program, meaning that after program 𝛼 terminates, 𝛽 proceeds. 𝛼 ∪ 𝛽 is a choice program, it means that either 𝛼 or 𝛽

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 7

proceeds non-deterministically. 𝛼∗ is a star program, which means that 𝛼 proceeds for an arbitrary number 𝑛 ≥ 0 of

times. 𝑝 is an atomic formula, including the boolean true. We call a formula having the modality [·] a dynamic formula.

Intuitively, formula [𝛼]𝜙 means that after all executions of program 𝛼 , formula 𝜙 holds.

The semantics of PDL is given based on a Kripke structure (cf. [29]) 𝑀 = (𝑆,→, 𝐼), where 𝑆 is a set of worlds;

→⊆ 𝑆 ×𝐴 × 𝑆 is a set of transitions labeled by atomic programs; 𝐼 : 𝑃 → P(𝑆) interprets each atomic PDL formula of

set 𝑃 to a set of worlds.

Given a Kripke structure𝑀 , the semantics of PDL is based on the denotational semantics [| · |] of regular programs,

given as a satisfaction relation𝑀,𝑤 |= 𝜙 between a world𝑤 and a PDL formula𝜙 . It is defined as follows by simultaneous

inductions on both programs and formulas:

a. [|𝑎 |] =𝑑𝑓 {(𝑤,𝑤 ′) | 𝑤 𝑎−→ 𝑤 ′
on𝑀};

b. [|𝜙?|] =𝑑𝑓 {(𝑤,𝑤) | 𝑀,𝑤 |= 𝜙};
c. [|𝛼 ; 𝛽 |] =𝑑𝑓 {(𝑤,𝑤 ′) | ∃𝑤 ′′ .(𝑤,𝑤 ′′) ∈ [|𝛼 |] ∧ (𝑤 ′′,𝑤 ′) ∈ [|𝛽 |]};
d. [|𝛼 ∪ 𝛽 |] =𝑑𝑓 [|𝛼 |] ∪ [|𝛽 |];
e. [|𝛼∗ |] =𝑑𝑓

⋃∞
𝑛=0 [|𝛼𝑛 |], where 𝛼0 =𝑑𝑓 true?, 𝛼𝑛 =𝑑𝑓 𝛼 ;𝛼

𝑛−1
for any 𝑛 ≥ 1.

1. 𝑀,𝑤 |= 𝑝 , if𝑤 ∈ 𝐼 (𝑝);
2. 𝑀,𝑤 |= ¬𝜙 , if𝑀,𝑤 ̸ |= 𝜙 ;
3. 𝑀,𝑤 |= 𝜙 ∧𝜓 , if𝑀,𝑤 |= 𝜙 and𝑀,𝑤 |=𝜓 ;
4. 𝑀,𝑤 |= [𝛼]𝜙 , if for all (𝑤,𝑤 ′) ∈ [|𝛼 |],𝑀,𝑤 ′ |= 𝜙 .

PDL studies the formulas that are valid w.r.t. all Kripke structures. Its proof system is complete (cf. [29]).

First-order dynamic logic (FODL) [49] is obtained from PDL by specializing the atomic actions 𝑎 and atomic formulas

𝑝 in PDL in some special domains. In FODL, an atomic action is an assignment of the form 𝑥 := 𝑒 , where 𝑥 ∈ Var fodl is a

variable and 𝑒 is an expression. Usually, we consider 𝑒 as an arithmetical expression of integer domain Z, e.g., 𝑥 + 5

and 𝑥 − 2 ∗ 𝑦, where 𝑥,𝑦 ∈ Var fodl. +,−, ∗, / are the usual arithmetical operators. An atomic formula is an arithmetical

relation 𝑒1 ⊲⊳ 𝑒2 with ⊲⊳∈ {=, <,≤, >,≥}, such as 𝑥 + 5 < 0 and 𝑥 − 2 ∗ 𝑦 = 1. The non-dynamic formulas in FODL are

thus the usual arithmetical first-order formulas linked by the logical connectives ¬,∧ and the quantifier ∀.
In FODL, a state 𝑤 : Var fodl → Z maps each variable to an integer. For an expression 𝑒 , 𝑤 (𝑒) returns the value

obtained by replacing all the free occurrences of each variable 𝑥 in 𝑒 with the value 𝑤 (𝑥). The Kripke structure

𝑀fodl = (𝑆fodl,→fodl, 𝐼fodl) of FODL is defined such that 𝑆fodl is the set of all states w.r.t. Var fodl and Z. For each assignment

𝑥 := 𝑒 ,𝑤
𝑥 :=𝑒−−−→ 𝑤 ′

is a relation on𝑀fodl iff𝑤
′ =𝑤 [𝑥 ↦→ 𝑒], where𝑤 [𝑥 ↦→ 𝑒] returns a state that maps 𝑥 to value𝑤 (𝑒)

and maps other variables to the value the same as𝑤 . 𝐼fodl interprets each atomic FODL formula as the set of states in

which it is satisfied. Or formally, for a state𝑤 ∈ 𝐼fodl (𝑒1 ⊲⊳ 𝑒2),𝑤 (𝑒1) ⊲⊳ 𝑤 (𝑒2) is true. Based on these, the semantics of

FODL can be defined in a similar way as shown above. One can refer to [29] for a more formal definition of FODL.

FODL forms the language basis of many existing dynamic-logic theories [7, 8, 22, 35, 43–45, 62, 63] as mentioned in

Section 1. Some are the extensions of FODL by adding new primitives, while the others can be expressed by FODL. For

example, for the traditional while programs 𝛼 :

𝛼 =𝑑𝑓 𝑥 := 𝑒 | 𝛼 ;𝛼 | if 𝜙 then 𝛼 else 𝛽 end | while 𝜙 do 𝛼 end,

their special statements can be captured by FODL as follows (cf. [29]):

if 𝜙 then 𝛼 else 𝛽 end =𝑑𝑓 𝜙? ;𝛼 ∪¬𝜙? ; 𝛽,

while 𝜙 do 𝛼 end =𝑑𝑓 (𝜙? ;𝛼)∗ ;¬𝜙?.
Manuscript submitted to ACM

8 Y. Zhang

4 Dynamic Logic DL𝔭

4.1 Syntax and Semantics of DL𝔭 Formulas

The theory of DL𝔭 extends PDL by permitting the program 𝛼 and formula 𝜙 in modalities [𝛼]𝜙 to take arbitrary forms,

only subject to some restriction conditions when discussing its soundness and completeness in Section 7.

In the relations defined in this section, we use · to express an ignored object whose content does not really matter.

For example, we may write𝑤 −→ ·,𝑤
𝛼/·
−−→ 𝑤 ′

, (𝛼, 𝜎) −→ (𝛼 ′, ·) and so on.

Definition 4.1 (Programs & Formulas). In DL𝔭 we assume two pre-defined disjoint sets P and F. P is a set of programs,

in which we distinguish a special program ↓∈ P called the “termianal program”. F is a set of formulas.

Definition 4.2 (DL𝔭 Formulas). A dynamic logical formula 𝜙 w.r.t. the parameters P and F, called a “parameterized

dynamic logic” (DL𝔭) formula, is defined as follows in BNF form:

𝜙 =𝑑𝑓 𝐹 | ¬𝜙 | 𝜙 ∧ 𝜙 | [𝛼]𝜙,

where 𝐹 ∈ F, 𝛼 ∈ P; [·] is a new operator that does not appear in any formula of F.
We denote the set of DL𝔭 formulas as𝔉𝑑𝑙𝑝 .

A DL𝔭 formula is called a dynamic formula if it contains a modality [·] within it. Intuitively, formula [𝛼]𝜙 means

that after the terminations of all executions of program 𝛼 , formula 𝜙 holds. ⟨·⟩ is the dual operator of [·]. Formula ⟨𝛼⟩𝜙
is expressed as ¬[𝛼]¬𝜙 . Other formulas with logical connectives such as ∨ and→ can be expressed by formulas with ¬
and ∧ accordingly.

Following the convention of defining a dynamic logic (cf. [29]), we introduce a novel Kripke structure to capture the

parameterized program behaviours in P.

Definition 4.3 (Program-labeled Kripke Structures). A “program-labeled” Kripke (PLK) structure w.r.t. parameters P
and F is a triple

𝐾 (P, F) =𝑑𝑓 (S,−→,I),

where S is a set of worlds; −→⊆ S× (P×P) ×S is a set of relations labeled by program pairs, in the form of𝑤1

𝛼/𝛼 ′
−−−→ 𝑤2

for some𝑤1,𝑤2 ∈ 𝑆 , 𝛼, 𝛼 ′ ∈ P; I : F → P(S) is an interpretation of formulas in F on the power set of worlds. Moreover,

𝐾 (P, F) satisfies that𝑤 ̸
↓/𝛼
−−−→ · for any𝑤 ∈ S and 𝛼 ∈ P.

Definition 4.3 differs from the Kripke structures𝑀 of PDL (Section 3) in the following aspects: (1) It introduces a

program-labeled relation of the form:𝑤1

𝛼/𝛼 ′
−−−→ 𝑤2; (2) It introduces an additional condition for the terminal program ↓.

The program-labeled relations describe programs’ transitional behaviours, which is usually captured by their operational

semantics (as we see in Section 5.3). This is unlike the relations in𝑀 , where a relation only captures the behaviours

of an atomic program. Intuitively, 𝑤1

𝛼/𝛼 ′
−−−→ 𝑤2 means that from world 𝑤1, program 𝛼 is transitioned to program 𝛼 ′,

ending with world𝑤2. The condition for ↓ exactly captures the meaning of program termination.

Below in this paper, our discussion is always based on an assumed PLK structure namelyK(P, F) = (S,−→,I).
Starting from Example 4.4 below, through Example 4.9, 4.10 and 5.2 we gradually instantiate the theory DL𝔭 in

the setting of the special theory FODL, where we restrict the program models of FODL to a simpler one — the while

programs. To do this, we give explicit definitions for the parameters P, F, L,M and the proof system Prop for the

operational semantics in DL𝔭 (L,M and Prop are introduced below). The logical theory after instantiated is called

DL𝔭-WP.

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 9

Example 4.4 (An Instantiation of Programs and Formulas). Consider instantiating P by the set of while programs

defined in Section 3, namely P𝑊 . Consider a programWP in P𝑊 :

WP =𝑑𝑓 {while (𝑛 > 0) do 𝑠 := 𝑠 + 𝑛 ; 𝑛 := 𝑛 − 1 end }.

Given an initial value of variables 𝑛 and 𝑠 , program WP computes the sum from 𝑛 to 1 stored in the variable 𝑠 . The

PLK structure K𝑊 = (S𝑊 ,−→𝑊 ,I𝑊) of while programs satisfies that S𝑊 = 𝑆fodl and I𝑊 = 𝐼fodl. −→𝑊 describes the

transitional behaviours of while programs, captured by the operational semantics of P𝑊 (see Table 1 in Section 5). −→𝑊

coincides with →fodl on atomic programs. For example, a relation𝑤
𝑥 :=𝑥+1/↓
−−−−−−−→ 𝑤 [𝑥 ↦→ 𝑤 (𝑥) + 1] is on K𝑊 iff a relation

𝑤
𝑥 :=𝑥+1−−−−−→ 𝑤 [𝑥 ↦→ 𝑤 (𝑥) + 1] is on𝑀fodl.

We instantiate F by the arithmetic first-order formulas in integer domain Z (Section 3), namely Fafo.

Definition 4.5 (Execution Paths). An “execution path” onK is a finite sequence of relations on −→:𝑤1

𝛼1/𝛽1−−−−→ ...
𝛼𝑛/𝛽𝑛−−−−−→

𝑤𝑛+1 (𝑛 ≥ 0) satisfying that 𝛽𝑛 ∈ {↓}, and 𝛽𝑖 = 𝛼𝑖+1 ∉ {↓} for all 1 ≤ 𝑖 < 𝑛.

In Definition 4.5, the execution path is sometimes simply written as a sequence of worlds:𝑤1 ...𝑤𝑛+1. When 𝑛 = 0,

the execution path is a single world𝑤1 (without any relations on −→).

Given a path 𝑡𝑟 , we often use 𝑡𝑟𝑏 and 𝑡𝑟𝑒 to denote its first and last element (if there is). For two paths 𝑡𝑟1 =𝑑𝑓 𝑤1 ...𝑤𝑛

and 𝑡𝑟2 =𝑑𝑓 𝑤
′
1
𝑤 ′

2
...𝑤 ′

𝑚 ... (𝑛,𝑚 ≥ 0), 𝑡𝑟1 is finite. The concatenation 𝑡𝑟1 · 𝑡𝑟2 is defined as the path:𝑤1 ...𝑤𝑛𝑤
′
2
...𝑤 ′

𝑚 ..., if

𝑤𝑛 =𝑤 ′
1
holds. We use relation 𝑡𝑟1 ⪯𝑠 𝑡𝑟2 to represent that 𝑡𝑟1 is a suffix of 𝑡𝑟2. Write 𝑡𝑟1 ≺𝑠 𝑡𝑟2 if 𝑡𝑟1 is a proper suffix

of 𝑡𝑟2.

Definition 4.6 (Semantics of DL𝔭 Formulas). Given a DL𝔭 formula 𝜙 , the satisfaction of 𝜙 by a world𝑤 ∈ S under K ,

denoted by K,𝑤 |= 𝜙 , is inductively defined as follows:

1. K,𝑤 |= 𝐹 where 𝐹 ∈ F, if𝑤 ∈ I(𝐹);
2. K,𝑤 |= ¬𝜙 , if K,𝑤 ̸ |= 𝜙 ;
3. K,𝑤 |= 𝜙 ∧𝜓 , if K,𝑤 |= 𝜙 and K,𝑤 |=𝜓 ;
4. K,𝑤 |= [𝛼]𝜙 , if for all execution paths of the form:𝑤

𝛼/·
−−→ ...

·/↓
−−→ 𝑤 ′

for some𝑤 ′ ∈ S, K,𝑤 ′ |= 𝜙 .

According to the definition of operator ⟨·⟩, its semantics is defined such thatK,𝑤 |= ⟨𝛼⟩𝜙 , if there exists an execution

path of the form𝑤
𝛼/·
−−→ ...

·/↓
−−→ 𝑤 ′

for some𝑤 ′ ∈ S such that K,𝑤 ′ |= 𝜙 .
A DL𝔭 formula 𝜙 is called valid w.r.t. K , denoted by K |= 𝜙 (or simply |= 𝜙), if K,𝑤 |= 𝜙 for all𝑤 ∈ S.
Compared to the semantics of PDL (Section 3), where to capture the semantics of a regular program one only has

to record the beginning and ending worlds, we have to record the whole execution path from the beginning to the

ending node. This is because the semantics of a program in DL𝔭 is operational, not denotational defined according to

its syntactic structures.

Example 4.7 (DL𝔭 Specifications). A property of programWP (Example 4.4) is described as the following formula

(𝑛 ≥ 0 ∧ 𝑛 = 𝑁 ∧ 𝑠 = 0) → [WP] (𝑠 = ((𝑁 + 1)𝑁)/2),

which means that given an initial condition of 𝑛 and 𝑠 , after the execution ofWP, 𝑠 equals to ((𝑁 + 1)𝑁)/2, which is

the sum of 1 + 2 + ... + 𝑁 , with 𝑁 a free variable in Z. We prove an equivalent labeled version of this formula in DL𝔭 in

Section 6.1.

Manuscript submitted to ACM

10 Y. Zhang

4.2 Labeled DL𝔭 Formulas

Definition 4.8 (Labels & Label Mappings). In DL𝔭, we assume two pre-defined sets L and M. L is a set of “labels”.

M ⊆ L → S is a set of label mappings. Each mapping 𝔪 ∈ M maps a label of L to a world of set S.

Labels usually denote the explicit data structures that capture program configurations, for example, storage, heaps,

substitutions, etc. Label mappings associate labels with the worlds, acting as the semantic functions of the labels.

Example 4.9 (An Instantiation of Labels). In while programs, we consider a type of labels namely L𝑊 that capture the

meaning of the program configurations of the form:

{𝑥1 ↦→ 𝑒1, ..., 𝑥𝑛 ↦→ 𝑒𝑛} (𝑛 ≥ 0)

where each variable 𝑥𝑖 ∈ Var𝑊 stores a unique value of arithmetic expression 𝑒𝑖 (1 ≤ 𝑖 ≤ 𝑛). To make it simple, we

restrict that variables 𝑥1, ...𝑥𝑛 must appear in the discussed programs and any free variable in 𝑒1, ..., 𝑒𝑛 cannot be any of

𝑥1, ..., 𝑥𝑛 . For any expression 𝑒 , 𝜎 (𝑒) returns an expression by replacing each free variable 𝑥𝑖 in 𝑒 with its expression 𝑒𝑖

in 𝜎 . A “configuration update” 𝜎𝑥𝑒 returns a configuration that stores variable 𝑥 as a value of expression 𝜎 (𝑒), while
storing other variables as the same value as 𝜎 .

For example, in programWP (Example 4.4), {𝑛 ↦→ 𝑁, 𝑠 ↦→ 0} can be a configuration that maps 𝑛 to value 𝑁 (as a free

variable) and 𝑠 to 0.

Example 4.10 (An Instantiation of Label Mappings). In while programs, we consider a set M𝑊 of label mappings.

M𝑊 ⊆ L𝑊 → S𝑊 . Each label mapping in M𝑊 is associated to a world, denoted by 𝔪𝑤 for some 𝑤 ∈ S𝑊 . Given a

configuration 𝜎 that captures the meaning of {𝑥1 ↦→ 𝑒1, ..., 𝑥𝑛 ↦→ 𝑒𝑛} (𝑛 ≥ 1), 𝔪𝑤 (𝜎) is defined as a world such that

(1) 𝔪𝑤 (𝜎) (𝑥𝑖) =𝑤 (𝑒𝑖) for each 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑛);
(2) 𝔪𝑤 (𝜎) (𝑦) =𝑤 (𝑦) for other variable 𝑦 ∈ Var𝑊 .

Where as explained in Section 3,𝑤 (𝑒𝑖) returns a value by substituting each free occurrences of variable 𝑥 of 𝑒𝑖 with the

value𝑤 (𝑥).
For example, let 𝑤 be a world with 𝑤 (𝑁) = 5, then we have 𝔪𝑤 ({𝑛 ↦→ 𝑁, 𝑠 ↦→ 0})(𝑛) = 𝑤 (𝑁) = 5, 𝔪𝑤 ({𝑛 ↦→

𝑁, 𝑠 ↦→ 0})(𝑠) = 0, and 𝔪𝑤 ({𝑛 ↦→ 𝑁, 𝑠 ↦→ 0})(𝑦) =𝑤 (𝑦) for any other variable 𝑦 ∉ {𝑛, 𝑠}.

Definition 4.11 (Labeled DL𝔭 Formulas). A “labeled formula” in DL𝔭 belongs to one of the following types of formulas

defined as follows:

𝜙 =𝑑𝑓 𝜎 : 𝜓 | (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′) | 𝜎 ⇓ 𝛼,

where 𝜎, 𝜎 ′ ∈ L, 𝛼, 𝛼 ′ ∈ P,𝜓 ∈ 𝔉𝑑𝑙𝑝 .

We use𝔉ldlp,𝔉pt and𝔉ter to represent the sets of labeled formulas of the forms: 𝜎 : 𝜓 , (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′) and 𝜎 ⇓ 𝛼
respectively. We often use 𝜏 to represent a labeled formula in𝔉ldlp ∪𝔉pt ∪𝔉ter.

In DL𝔭, relation (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′) is called a program transition, which indicates an execution from a so-called

program state (𝛼, 𝜎) to another program state (𝛼 ′, 𝜎 ′). Relation 𝜎 ⇓ 𝛼 is called a program termination, which describes

the termination of a program 𝛼 under a label 𝜎 .

Definition 4.12 (Substitution of Labels). A “substitution” 𝜂 : L → L is a function on L satisfying that for any label

mapping 𝔪 ∈ M, there exists a label mapping 𝔪′ (𝔪, 𝜂) (determined only by 𝔪 and 𝜂) such that 𝔪′ (𝜎) = 𝔪(𝜂 (𝜎)) for
all labels 𝜎 ∈ L.
Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 11

Definition 4.12 is used in the rule (Sub) (Table 2) and in the proof of soundness of rules 𝑃𝑟ldlp and the cyclic proof

system of DL𝔭.

Definition 4.13 (Semantics of Labeled DL𝔭 Formulas). Given a label mapping 𝔪 ∈ M and a labeled formula 𝜏 ∈
𝔉ldlp ∪𝔉pt ∪𝔉ter, the satisfaction relation K,M,𝔪 |= 𝜏 of a formula 𝜏 by K , M and 𝔪 (simply 𝔪 |= 𝜏) is defined as

follows according to the different cases of 𝜏 :

1. K,M,𝔪 |= 𝜎 : 𝜙 , if K,𝔪(𝜎) |= 𝜙 ;
2. K,M,𝔪 |= (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′), if 𝔪(𝜎)

𝛼/𝛼 ′
−−−→ 𝔪(𝜎 ′) is a relation on K ;

3. K,M,𝔪 |= 𝜎 ⇓ 𝛼 , if there exists an execution path 𝔪(𝜎)
𝛼/·
−−→ ...

·/↓
−−→ 𝑤 on K for some world𝑤 ∈ S.

A formula 𝜏 ∈ 𝔉ldlp ∪𝔉pt ∪𝔉ter is valid, denoted by K |= 𝜏 (or simply |= 𝜏), if K,M,𝔪 |= 𝜏 for all 𝔪 ∈ M.

5 A Cyclic Proof System for DL𝔭

We propose a cyclic proof system for DL𝔭. We firstly propose a labeled proof system 𝑃𝑟dlp to support reasoning based

on operational semantics (Section 5.3). Then we construct a cyclic proof structure for system 𝑃𝑟dlp, which support

deriving infinite proof trees under certain conditions (Section 5.4). Section 5.1 and 5.2 introduce the notions of labeled

sequent calculus and cyclic proof respectively.

5.1 Labeled Sequent Calculus

A sequent is a logical argumentation of the form: Γ ⇒ Δ, where Γ and Δ are finite multi-sets of formulas, called the left

side and the right side of the sequent respectively. We use dot · to express Γ or Δ when they are empty sets. Intuitively,

a sequent Γ ⇒ Δ means that if all formulas in Γ hold, then one of formulas in Δ holds. We use 𝜈 to represent a sequent.

A labeled sequent is a sequent in which each formula is a labeled formula in𝔉ldlp ∪𝔉pt ∪𝔉ter.

According to the meaning of a sequent above, a labeled sequent Γ ⇒ Δ is valid, if for every 𝔪 ∈ M, 𝔪 |= 𝜏 for all
𝜏 ∈ Γ implies 𝔪 |= 𝜏 ′ for some 𝜏 ′ ∈ Δ. For a multi-set Γ of formulas, we write 𝔪 |= Γ to mean that 𝔪 |= 𝜏 for all 𝜏 ∈ Γ.

5.2 Proofs & Preproofs & Cyclic Proofs

An inference rule is of the form
𝜈1 ... 𝜈𝑛

𝜈 , where each of 𝜈, 𝜈𝑖 (1 ≤ 𝑖 ≤ 𝑛) is also called a node. Each of 𝜈1, ..., 𝜈𝑛 is

called a premise, and 𝜈 is called the conclusion, of the rule. The semantics of the rule is that the validity of sequents

𝜈1, ..., 𝜈𝑛 implies the validity of sequent 𝜈 . A formula 𝜏 of node 𝜈 is called the target formula if except 𝜏 other formulas

are kept unchanged in the derivation from 𝜈 to some node 𝜈𝑖 (1 ≤ 𝑖 ≤ 𝑛). And in this case other formulas except 𝜏 in

node 𝜈 are called the context of 𝜈 . A formula pair (𝜏1, 𝜏2) with 𝜏1 in 𝜈 and 𝜏2 in some 𝜈𝑖 is called a conclusion-premise

(CP) pair of the derivation from 𝜈 to 𝜈𝑖 .

In this paper, we use a double-lined inference form:

𝜙1 ... 𝜙𝑛

𝜙

to represent both rules

Γ ⇒ 𝜙1,Δ ... Γ ⇒ 𝜙𝑛,Δ

Γ ⇒ 𝜙,Δ and

Γ, 𝜙1 ⇒ Δ ... Γ, 𝜙𝑛 ⇒ Δ

Γ, 𝜙 ⇒ Δ ,

provided any context Γ and Δ.

Manuscript submitted to ACM

12 Y. Zhang

A proof tree (or proof) is a finite tree structure formed by making derivations backward from a root node. In a proof

tree, a node is called terminal if it is the conclusion of an axiom.

In the cyclic proof approach (cf. [16]), a preproof is an infinite proof tree (i.e. some of its derivations contain infinitely

many nodes) in which there exist non-terminal leaf nodes, called buds. Each bud is identical to one of its ancestors in

the tree. A bud and one of its identical ancestors together is called a back-link. A derivation path in a preproof is an

infinite sequence of nodes 𝜈1𝜈2 ...𝜈𝑚 ... (𝑚 ≥ 1) starting from the root node 𝜈1, where each node pair (𝜈𝑖 , 𝜈𝑖+1) (𝑖 ≥ 1) is a

CP pair of a rule. A proof tree is cyclic, if it is a preproof in which there exists a “progressive derivation trace”, whose

definition depends on specific logic theories (see Definition 5.5 later for DL𝔭), over every derivation path.

A proof system 𝑃𝑟 consists of a finite set of inference rules. We say that a node 𝜈 can be derived from 𝑃𝑟 , denoted by

𝑃𝑟 ⊢ 𝜈 , if a proof tree can be constructed (with 𝜈 the root node) by applying the rules in 𝑃𝑟 , which satisfies either (1) all

of its leaf nodes terminate or (2) it is a cyclic proof.

5.3 A Proof System for DL𝔭

The labeled proof system 𝑃𝑟dlp for DL𝔭 consists of two parts: a finite set 𝑃𝑟ldlp of kernel rules for deriving DL𝔭 formulas,

as listed in Table 2, and a finite set Prop of the rules, as a parameter of DL𝔭, for capturing the operational semantics

of the programs in P. The rules in 𝑃𝑟ldlp do not rely on the explicit structures of the programs in P, but depend on

the derivations of program transitions according to Prop as their side-conditions. 𝑃𝑟dlp provides a universal logical
framework but modulo different program theories: i.e., Prop.

The content of Prop depends on the explicit structures of the programs in P and can vary from case to case. Through

the rules in Prop, in the system 𝑃𝑟dlp we can derive the program transitions 𝔉pt and terminations 𝔉ter respectively.

However, to coincide with the PLK structure K(P, F) as well as to fulfill the soundness and completeness of DL𝔭, we

need to make the following assumptions on Prop as described in the next definition.

Definition 5.1 (Assumptions on Set Prop (𝑃𝑟dlp)). The parameter Prop (as a part of 𝑃𝑟dlp) satisfies that

1. Coincidence with K(P, F). For any 𝔪 ∈ M, Γ such that 𝔪 |= Γ, and for any 𝜎 ∈ L, if 𝔪(𝜎)
𝛼/𝛼 ′
−−−→ 𝑤 is a

relation on K for some 𝛼, 𝛼 ′ ∈ P and 𝑤 ∈ S, then there exists a label 𝜎 ′ ∈ L such that 𝔪(𝜎 ′) = 𝑤 and

|= (Γ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′)).
2. Soundness w.r.t.𝔉pt and𝔉ter. For any derivation 𝑃𝑟dlp ⊢ (Γ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′)) (resp. 𝑃𝑟dlp ⊢ (Γ ⇒ 𝜎 ⇓ 𝛼)) in

system 𝑃𝑟dlp, |= (Γ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′)) (resp. |= (Γ ⇒ 𝜎 ⇓ 𝛼).
3. Completeness w.r.t.𝔉pt and𝔉ter. For any valid sequent Γ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′) (resp. Γ ⇒ 𝜎 ⇓ 𝛼), 𝑃𝑟dlp ⊢ (Γ ⇒

(𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′)) (resp. 𝑃𝑟dlp ⊢ (Γ ⇒ 𝜎 ⇓ 𝛼)).
4. Simple Conditions. For any valid sequent Γ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′), there is a context Γ′ in which all formulas are

non-dynamic ones, such that |= (Γ′ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′)) and |= (Γ ⇒ Γ′).

Intuitively, the coincidence withK(L, F) says that the relations onK between worlds (, once their starting nodes can

be captured by labels,) can be expressed by the program transitions as labeled formulas of DL𝔭. It is essential for proving

the soundness of the rules in 𝑃𝑟ldlp (see the proof of Theorem 5.3 in Appendix A). The soundness and completeness w.r.t.

𝔉pt and𝔉ter are required for proving Theorem 5.3, 7.3 and 7.15. The soundness condition says that the proof system

Prop derives no more than the program transitions that are valid on K , while the completeness condition says that

Prop is enough for deriving all those behaviours. The assumption “simple conditions” is needed in our proof of the

conditional completeness of DL𝔭 (Theorem 7.15). It means that the conditions for program transitions do not depend

on the behaviours of other programs. This is usually the case for the program languages in practice. However, this

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 13

Γ ⇒ (𝑥 := 𝑒, 𝜎) −→ (↓, 𝜎𝑥𝑒),Δ
(𝑥 :=𝑒)

Γ ⇒ (𝛼1, 𝜎) −→ (𝛼 ′
1
, 𝜎 ′),Δ

Γ ⇒ (𝛼1;𝛼2, 𝜎) −→ (𝛼 ′
1
;𝛼2, 𝜎

′),Δ
(;)

Γ ⇒ (𝛼1, 𝜎) −→ (↓, 𝜎 ′),Δ
Γ ⇒ (𝛼1;𝛼2, 𝜎) −→ (𝛼2, 𝜎 ′),Δ

(;↓)
Γ ⇒ (𝛼1, 𝜎) −→ (𝛼 ′

1
, 𝜎 ′),Δ Γ ⇒ 𝜎 : 𝜙,Δ

Γ ⇒ (if 𝜙 then 𝛼1 else 𝛼2 end, 𝜎) −→ (𝛼 ′
1
, 𝜎 ′),Δ

(ite1)

Γ ⇒ (𝛼2, 𝜎) −→ (𝛼 ′
2
, 𝜎 ′),Δ Γ ⇒ 𝜎 : ¬𝜙,Δ

Γ ⇒ (if 𝜙 then 𝛼1 else 𝛼2 end, 𝜎) −→ (𝛼 ′
2
, 𝜎 ′),Δ

(ite2)

Γ, 𝜎 : 𝜙 ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′),Δ Γ ⇒ 𝜙 : 𝜎,Δ

Γ ⇒ (while 𝜙 do 𝛼 end, 𝜎) −→ (𝛼 ′; while 𝜙 do 𝛼 end, 𝜎 ′),Δ
(wh1)

Γ, 𝜎 : 𝜙 ⇒ (𝛼, 𝜎) −→ (↓, 𝜎 ′),Δ Γ ⇒ 𝜎 : 𝜙,Δ

Γ ⇒ (while 𝜙 do 𝛼 end, 𝜎) −→ (while 𝜙 do 𝛼 end, 𝜎 ′),Δ
(wh1↓)

Γ ⇒ 𝜎 : ¬𝜙,Δ
Γ ⇒ (while 𝜙 do 𝛼 end, 𝜎) −→ (↓, 𝜎),Δ

(wh2)

Table 1. Partial Rules of (Prop)𝑊 for Program Transitions of While Programs

{Γ ⇒ 𝜎 ′ : [𝛼 ′]𝜙,Δ} (𝛼 ′,𝜎 ′) ∈Φ

Γ ⇒ 𝜎 : [𝛼]𝜙,Δ
1 ([𝛼]𝑅) , where Φ =𝑑𝑓 {(𝛼 ′, 𝜎 ′) | 𝑃𝑟dlp ⊢ (Γ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′),Δ)}

Γ, 𝜎 ′ : [𝛼 ′]𝜙 ⇒ Δ

Γ, 𝜎 : [𝛼]𝜙 ⇒ Δ
1 ([𝛼]𝐿)

, if 𝑃𝑟dlp ⊢ (Γ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′),Δ)

𝜎 : 𝜙

𝜎 : [↓]𝜙
([↓]) Γ ⇒ Δ

2 (Ter) Γ ⇒ Δ
Sub(Γ) ⇒ Sub(Δ)

3 (Sub)
Γ, 𝜎 : 𝜙 ⇒ 𝜎 : 𝜙,Δ

(ax)

Γ ⇒ 𝜎 : 𝜙 Γ, 𝜎 : 𝜙 ⇒ Δ

Γ ⇒ Δ
(Cut) Γ ⇒ Δ

Γ ⇒ 𝜎 : 𝜙,Δ
(WkR) Γ ⇒ Δ

Γ, 𝜎 : 𝜙 ⇒ Δ
(WkL) 𝜎 : 𝜙, 𝜎 : 𝜙

𝜎 : 𝜙
(Con)

Γ, 𝜎 : 𝜙 ⇒ Δ

Γ ⇒ 𝜎 : ¬𝜙,Δ
(¬𝑅)

Γ ⇒ 𝜎 : 𝜙,Δ

Γ, 𝜎 : ¬𝜙 ⇒ Δ
(¬𝐿)

Γ ⇒ 𝜎 : 𝜙,Δ Γ ⇒ 𝜎 : 𝜓,Δ

Γ ⇒ 𝜎 : 𝜙 ∧𝜓,Δ
(∧𝑅)

Γ, 𝜎 : 𝜙, 𝜎 : 𝜓 ⇒ Δ

Γ, 𝜎 : 𝜙 ∧𝜓 ⇒ Δ
(∧𝐿)

1 𝛼 ∉ {↓}. 2 for each 𝜎 : 𝜙 ∈ Γ ∪ Δ, 𝜙 ∈ F; Sequent Γ ⇒ Δ is valid.
3 Sub is given by Definition 4.12.

Table 2. Rules 𝑃𝑟ldlp for the Proof System of DL𝔭

assumption makes DL𝔭 unable to instantiate the dynamic logics with “rich tests” (cf. [29]), where a test can be a dynamic

formula itself, for example a test [𝑥 := 𝑒]𝜙?.

Example 5.2 (An Instantiation of Prop). Table 1 displays a set of partial rules of (Prop)𝑊 for describing the operational

semantics of while programs, where we omit the rules for deriving program terminations. In Table 1, 𝜎𝑥𝑒 is defined in

Example 4.9.

In practice, we usually think that the rules Prop faithfully commit the operational semantics of the programs. So in

this manner we simply trust the assumptions 1, 2, 3 of Definition 5.1 without proving.

Through the rules in 𝑃𝑟ldlp, a labeled DL𝔭 formula can be transformed into proof obligations as non-dynamic formulas,

which can then be encoded and verified accordingly through, for example, an SAT/SMT checking procedure. The rules

for other operators like ∨,→ can be derived accordingly using the rules in Table 2.

The illustration of each rule in Table 2 is as follows.

Manuscript submitted to ACM

14 Y. Zhang

Rules ([𝛼]𝑅) and ([𝛼]𝐿) reason about dynamic parts of labeled DL𝔭 formulas. Both rules rely on side deductions:

“𝑃𝑟dlp ⊢ (Γ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′),Δ)” as sub-proof procedures of program transitions. In rule ([𝛼]𝑅), {...} (𝛼 ′,𝜎 ′) ∈Φ

represents the collection of premises for all program states (𝛼 ′, 𝜎 ′) ∈ Φ. By the finiteness of system 𝑃𝑟dlp, set Φ must

be finite (because only a finite number of forms (𝛼 ′, 𝜎 ′) can be derived). So rule ([𝛼]𝑅) only has a finite number of

premises. When Φ is empty, the conclusion terminates. Compared to rule ([𝛼]𝑅), rule ([𝛼]𝐿) has only one premise for

some program state (𝛼 ′, 𝜎 ′).
Rule ([↓]) deals with the situation when the program is a terminal one ↓. Its soundness is straightforward by the

semantics of ↓ in Definition 4.3.

Rule (Ter) indicates that one proof branch terminates when a sequent Γ ⇒ Δ is valid in which all labeled formulas

are non-dynamic ones.

Rule (Sub) describes a specialization process for labeled dynamic formulas. For a set𝐴 of labeled formulas, Sub(𝐴) =𝑑𝑓
{Sub(𝜏) | 𝜏 ∈ 𝐴}, with Sub a substitution (Definition 4.12). Intuitively, if sequent Γ ⇒ Δ is valid, then its one of special

cases Sub(Γ) ⇒ Sub(Δ) is also valid. Rule (Sub) plays an important role in constructing a bud in a cyclic proof structure

(Section 5.4). See Section 6.1 for more details.

Rules from (ax) to (∧𝐿) are the “labeled verions” of the corresponding rules inherited from traditional first-order

logic. Their meanings are classical and we omit their discussions here.

Theorem 5.3. Each rule from 𝑃𝑟ldlp in Table 2 is sound.

Following the above explanations, Theorem 5.3 can be proved according to the semantics of labeled DL𝔭 formulas

under the assumption of Definition 5.1. See Appendix A for more details.

5.4 Construction of a Cyclic Proof Structure for DL𝔭

We build a cyclic labeled proof system for DL𝔭, in order to recognize and admit potential infinite derivations as the

example shown in Section 2. Based on the notion of preproofs (Section 5.2), we build a cyclic proof structure for system

𝑃𝑟dlp, where the key part is to introduce the notion of progressive derivation traces in DL𝔭 (Definition 5.5).

Next we first introduce the notion of progressive derivation traces for DL𝔭, then we define the cyclic proof structure

for DL𝔭 as a special case of the notion already given in Section 5.2.

Definition 5.4 (Derivation Traces). A “derivation trace” over a derivation path 𝜇1𝜇2 ...𝜇𝑘𝜈1𝜈2 ...𝜈𝑚 ... (𝑘 ≥ 0,𝑚 ≥ 1) is an

infinite sequence 𝜏1𝜏2 ...𝜏𝑚 ... of formulas with each formula 𝜏𝑖 (1 ≤ 𝑖 ≤𝑚) in node 𝜈𝑖 . Each CP pair (𝜏𝑖 , 𝜏𝑖+1) (𝑖 ≥ 1) of

derivation (𝜈𝑖 , 𝜈𝑖+1) satisfies special conditions as follows according to (𝜈𝑖 , 𝜈𝑖+1) being the different instances of rules
from 𝑃𝑟ldlp:

1. If (𝜈𝑖 , 𝜈𝑖+1) is an instance of rule ([𝛼]𝑅), ([𝛼]𝐿), ([↓]), (¬𝑅), (¬𝐿), (∧𝑅) or (∧𝐿), then either 𝜏𝑖 is the target

formula and 𝜏𝑖+1 is its replacement by application of the rule, or 𝜏𝑖 = 𝜏𝑖+1;

2. If (𝜈𝑖 , 𝜈𝑖+1) is an instance of rule (Sub), then 𝜏𝑖 = Sub(𝜎) : 𝜙 and 𝜏𝑖+1 = 𝜎 : 𝜙 for some 𝜎 ∈ L and 𝜙 ∈ 𝔉𝑑𝑙𝑝 ;

3. If (𝜈𝑖 , 𝜈𝑖+1) is an instance of other rules, then 𝜏𝑖 = 𝜏𝑖+1.

Below an expression 𝑛 :: 𝑂 means that we use name 𝑛 to denote the object 𝑂 .

Definition 5.5 (Progressive Derivation Traces). In a preproof of system 𝑃𝑟dlp, given a derivation trace 𝜏1𝜏2 ...𝜏𝑚 ... over a

derivation path ...𝜈1𝜈2 ...𝜈𝑚 ... (𝑚 ≥ 1) starting from 𝜏1 in node 𝜈1, a CP pair (𝜏𝑖 , 𝜏𝑖+1) (1 ≤ 𝑖 ≤𝑚) of derivation (𝜈𝑖 , 𝜈𝑖+1)
Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 15

is called a “progressive step”, if (𝜏𝑖 , 𝜏𝑖+1) is the following CP pair of an instance of rule ([𝛼]𝑅):
... 𝜈𝑖+1 :: (Γ ⇒ 𝜏𝑖+1 :: (𝜎 ′ : [𝛼 ′]𝜙),Δ) ...

𝜈𝑖 :: (Γ ⇒ 𝜏𝑖 :: (𝜎 : [𝛼]𝜙),Δ),
([𝛼]𝑅)

;

or the following CP pair of an instance of rule ([𝛼]𝐿):
𝜈𝑖+1 :: (Γ, 𝜏𝑖+1 :: (𝜎 ′ : [𝛼 ′]𝜙) ⇒ Δ)
𝜈𝑖 :: (Γ, 𝜏𝑖 :: (𝜎 : [𝛼]𝜙) ⇒ Δ)

([𝛼]𝐿) ,

provided with an additional side deduction 𝑃𝑟dlp ⊢ (Γ ⇒ 𝜎 ⇓ 𝛼,Δ).
If a derivation trace has an infinite number of progressive steps, we say that the trace is “progressive”.

The additional side condition of the instance of rule ([𝛼]𝐿) is the key to prove the corresponding case in Lemma 7.9

(see Appendix A).

Theorem 5.3 shows that each rule of 𝑃𝑟dlp is sound. But that does not mean that the proof system 𝑃𝑟dlp is sound,

because we need to make sure that each cyclic proof also leads to a valid conclusion. The soundness of the system 𝑃𝑟dlp

is fully discussed in Section 7.

5.5 Lifting Rules From Dynamic Logic Theories

We introduce a technique of lifting the rules from particular dynamic-logic theories, e.g. FODL [49], to the labeled

ones in DL𝔭. It makes possible for embedding existing dynamic-logic theories into DL𝔭 without losing their abilities of

deriving based on programs’ syntactic structures. This in turn facilitates deriving DL𝔭 formulas in particular program

domains by making use of special inference rules. Below, we propose a lifting process for general inference rules under

a certain condition of labels (Proposition 5.10). One example of the applications of this technique is given in Section 6.2.

We first introduce the concept of free labels, as a sufficient condition for the labels to carry out the lifting. Then we

introduce the lifting process as Proposition 5.10.

Definition 5.6 (Effect Equivalence). Two worlds 𝑤,𝑤 ′ ∈ S “have the same effect” w.r.t a set of unlabeled formulas

𝐴 ⊆ 𝔉𝑑𝑙𝑝 , denoted by𝑤 =𝐴 𝑤
′
, if for any 𝜙 ∈ 𝐴,𝑤 |= 𝜙 iff𝑤 ′ |= 𝜙 .

Example 5.7. In DL𝔭-WP, consider two worlds𝑤,𝑤 ′ ∈ S𝑊 (which are two mappings from Var fodl to Z) satisfying

that 𝑤 (𝑥) = 1,𝑤 (𝑦) = 1 and 𝑤 ′ (𝑥) = 2,𝑤 ′ (𝑦) = 1 for some 𝑥,𝑦 ∈ Var fodl. Let fomula 𝜙 = (𝑥 + 𝑦 > 1) ∈ Fafo. Then
𝑤 ={𝜙 } 𝑤

′
, although𝑤 ≠ 𝑤 ′

.

Definition 5.8 (Free Labels). A label 𝜎 ∈ L is called “free” w.r.t. a set 𝐴 of formulas if for any world𝑤 ∈ S, there exists
a label mapping 𝔪 ∈ M such that

𝑤 =𝐴 𝔪(𝜎) .

We denote the set of all free labels w.r.t. 𝐴 as free(L, 𝐴).

Intuitively, the freedom of a label 𝜎 w.r.t. a set 𝐴 of formulas means that 𝜎 is general enough so that it does not have

an impact on the validity of the formulas in 𝐴.

Example 5.9. In DL𝔭-WP, let 𝜎 = {𝑥 ↦→ 𝑡 + 1} ∈ L𝑊 (with 𝑡 a variable). 𝜎 is free w.r.t. {𝜙} for 𝜙 = (𝑥 + 𝑦 > 1)
(Example 5.7). Because for any world 𝑤 ∈ S𝑊 , let 𝑤 ′ =𝑑𝑓 𝑤 [𝑡 ↦→ 𝑥 − 1], then we have 𝑤 ={𝜙 } 𝑚𝑤′ (𝜎), since
𝑤 (𝑥) = 𝔪𝑤′ (𝜎) (𝑥) and𝑤 (𝑦) = 𝔪𝑤′ (𝜎) (𝑦). On the other hand, let 𝜎 ′ = {𝑥 ↦→ 0, 𝑦 ↦→ 0}, then 𝜎 ′ is not free w.r.t. {𝜙}.
Because for any𝑤 ∈ S𝑊 , 𝔪𝑤 (𝜎 ′) (𝑥) = 𝔪𝑤 (𝜎 ′) (𝑦) = 0, so 𝔪𝑤 (𝜎 ′) ̸|= 𝜙 .

We see that compared to 𝜎 , 𝜎 ′ is too “explicit” so that it affects the validity of formula 𝜙 .

Manuscript submitted to ACM

16 Y. Zhang

For a set 𝐴 of unlabeled formulas, we write 𝜎 : 𝐴 to mean the set of labeled formulas {𝜎 : 𝜙 | 𝜙 ∈ 𝐴}.

Proposition 5.10 (Lifting Process). Given a sound rule of the form

Γ1 ⇒ Δ1 ... Γ𝑛 ⇒ Δ𝑛

Γ ⇒ Δ , 𝑛 ≥ 1,

in which all formulas are unlabeled, then the rule

𝜎 : Γ1 ⇒ 𝜎 : Δ1 ... 𝜎 : Γ𝑛 ⇒ 𝜎 : Δ𝑛

𝜎 : Γ ⇒ 𝜎 : Δ

is sound for any label 𝜎 ∈ free(L, Γ ∪ Δ ∪ Γ1 ∪ Δ1 ∪ ... ∪ Γ𝑛 ∪ Δ𝑛).

Proposition 5.10 is proved in Appendix A based on the notion of free labels defined above.

6 Case Studies

In this section, we illustrate the potential usage of DL𝔭 by several instances.

We firstly show how labeled dynamic formulas in DL𝔭 can be derived according to the cyclic proof system proposed in

Table 2. We give an example of deduction for a while program (Section 6.1). In Appendix B, we briefly introduce another

instantiation of DL𝔭 for the synchronous language Esterel [12] and show a cyclic derivation of an Esterel program. The

second example better highlights the advantages of DL𝔭 since the loop structures of some Esterel programs are implicit.

Secondly, we take the rules in FODL as examples to illustrate how to carry out rule lifting in DL𝔭 (Section 6.2). It

demonstrates the compatibility of DL𝔭 to the existing dynamic-logic theories, allowing them to be reused in DL𝔭. As

we can see, this also helps increasing the efficiency of the derivations in DL𝔭 by adopting the compositional rules in

special domains.

In Section 4 and 5, we have seen the instantiation theory DL𝔭-WP of DL𝔭. Section 6.3 and 6.4 further introduces

more complex instantiations of DL𝔭.

In Section 6.3, We embed FODL theory into DL𝔭. This example shows the potential usefulness of DL𝔭 for different

program models in practice, because FODL is the basic theory underlying many dynamic-logic variations (such

as [7, 43, 44, 62]). By an example of reasoning about both while programs and regular programs at the same time, we

also show the heterogeneity of DL𝔭, that different program models can be easily compared with different operational

semantics.

In Section 6.4, more complex encoding of labels and formulas are further displayed. We propose to encode a first-

ordered version of process logic [28] into DL𝔭. Process logic provides a logical framework for not just reasoning about

program properties after the terminations, but also properties during the executions. From this example, we see that

in DL𝔭 the labels and formulas can be more expressive than in traditional Hoare-style logics where only before-after

properties can be reasoned about. In Appendix C, we give another example to show this by encoding separation

logic [51] in DL𝔭. It provides a novel way of reasoning about separation-logic formulas directly through symbolic

executions.

6.1 A Cyclic Deduction of A While Program

We prove the property in Example 4.7 according to the rules in Table 2. This property can be captured by the following

equivalent labeled sequent

𝜈1 =𝑑𝑓 𝜎1 : 𝑛 ≥ 0 ⇒ 𝜎1 : [WP] (𝑠 = ((𝑁 + 1)𝑁)/2),
Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 17

17

(Ter)

3

(Wk𝑅)

16

15

(Wk𝐿)

14

(Sub)

11

(Wk𝐿) 13

(Ter)

12

(Wk𝑅)

10

(Cut)

9

([𝛼]𝑅)

5

([𝛼]𝑅)

8

(Ter)

7

([↓])

6

([𝛼]𝑅)

4

(∨𝐿)

2

(Cut)

𝜈1: 1
(Sub)

Definitions of other symbols:

WP =𝑑𝑓 {while (𝑛 > 0) do 𝑠 := 𝑠 + 𝑛 ; 𝑛 := 𝑛 − 1 end }
𝛼1 =𝑑𝑓 𝑠 := 𝑠 + 𝑛 ; 𝑛 := 𝑛 − 1

𝜙1 =𝑑𝑓 (𝑠 = ((𝑁 + 1)𝑁)/2)
𝜎1 =𝑑𝑓 {𝑛 ↦→ 𝑁, 𝑠 ↦→ 0}
𝜎2 =𝑑𝑓 {𝑛 ↦→ 𝑁 −𝑚, 𝑠 ↦→ (2𝑁 −𝑚 + 1)𝑚/2}
𝜎3 =𝑑𝑓 {𝑛 ↦→ 𝑁 −𝑚, 𝑠 ↦→ (2𝑁 − (𝑚 + 1) + 1) (𝑚 + 1)/2}
𝜎4 =𝑑𝑓 {𝑛 ↦→ 𝑁 − (𝑚 + 1), 𝑠 ↦→ (2𝑁 − (𝑚 + 1) + 1) (𝑚 + 1)/2}

1: 𝜎1 : 𝑛 ≥ 0 ⇒ 𝜎1 : [while (𝑛 > 0) do 𝛼1 end]𝜙1
2: 𝜎2 : 𝑛 ≥ 0 ⇒ 𝜎2 : [while (𝑛 > 0) do 𝛼1 end]𝜙1
3: 𝜎2 : 𝑛 ≥ 0 ⇒ 𝜎2 : [while (𝑛 > 0) do 𝛼1 end]𝜙1, 𝜎2 : (𝑛 > 0 ∨ 𝑛 ≤ 0)
17: 𝜎2 : 𝑛 ≥ 0 ⇒ 𝜎2 : (𝑛 > 0 ∨ 𝑛 ≤ 0)
4: 𝜎2 : 𝑛 ≥ 0, 𝜎2 : (𝑛 > 0 ∨ 𝑛 ≤ 0) ⇒ 𝜎2 : [while (𝑛 > 0) do 𝛼1 end]𝜙1
5: 𝜎2 : 𝑛 ≥ 0, 𝜎2 : 𝑛 > 0 ⇒ 𝜎2 : [while (𝑛 > 0) do 𝛼1 end]𝜙1
9: 𝜎2 : 𝑛 ≥ 0, 𝜎2 : 𝑛 > 0 ⇒ 𝜎3 : [𝑛 := 𝑛 − 1; while (𝑛 > 0) do 𝛼1 end]𝜙1
10: 𝜎2 : 𝑛 ≥ 0, 𝜎2 : 𝑛 > 0 ⇒ 𝜎4 : [while (𝑛 > 0) do 𝛼1 end]𝜙1
11: 𝜎2 : 𝑛 ≥ 0, 𝜎2 : 𝑛 > 0, 𝜎4 : 𝑛 ≥ −1, 𝜎4 : 𝑛 ≥ 0 ⇒ 𝜎4 : [while (𝑛 > 0) do 𝛼1 end]𝜙1
14: 𝜎4 : 𝑛 ≥ −1, 𝜎4 : 𝑛 ≥ 0 ⇒ 𝜎4 : [while (𝑛 > 0) do 𝛼1 end]𝜙1
15: 𝜎2 : 𝑛 ≥ −1, 𝜎2 : 𝑛 ≥ 0 ⇒ 𝜎2 : [while (𝑛 > 0) do 𝛼1 end]𝜙1
16: 𝜎2 : 𝑛 ≥ 0 ⇒ 𝜎2 : [while (𝑛 > 0) do 𝛼1 end]𝜙1
12: 𝜎2 : 𝑛 ≥ 0, 𝜎2 : 𝑛 > 0 ⇒ 𝜎4 : [while (𝑛 > 0) do 𝛼1 end]𝜙1, 𝜎4 : 𝑛 ≥ −1, 𝜎4 : 𝑛 ≥ 0

13: 𝜎2 : 𝑛 ≥ 0, 𝜎2 : 𝑛 > 0 ⇒ 𝜎4 : 𝑛 ≥ −1, 𝜎4 : 𝑛 ≥ 0

6: 𝜎2 : 𝑛 ≥ 0, 𝜎2 : 𝑛 ≤ 0 ⇒ 𝜎2 : [while (𝑛 > 0) do 𝛼1 end]𝜙1
7: 𝜎2 : 𝑛 ≥ 0, 𝜎2 : 𝑛 ≤ 0 ⇒ 𝜎2 : [↓]𝜙1
8: 𝜎2 : 𝑛 ≥ 0, 𝜎2 : 𝑛 ≤ 0 ⇒ 𝜎2 : (𝑠 = ((𝑁 + 1)𝑁)/2)

Table 3. A Derivation of Property 𝜈1

where 𝜎1 =𝑑𝑓 {𝑛 ↦→ 𝑁, 𝑠 ↦→ 0}, describing the initial configuration ofWP.

Table 3 shows its derivations. We omit all side deductions as sub-proof procedures in instances of rule ([𝛼]𝑅) derived
using the inference rules in Table 1. Non-primitive rule (∨𝐿) can be derived by the rules for ¬ and ∧ as follows:

Γ, 𝜙 ⇒ Δ

Γ ⇒ ¬𝜙,Δ
(¬𝑅)

Γ,𝜓 ⇒ Δ

Γ ⇒ ¬𝜓,Δ
(¬𝑅)

Γ ⇒ (¬𝜙) ∧ (¬𝜓),Δ
(∧𝑅)

Γ, 𝜙 ∨𝜓 ⇒ Δ
(¬𝐿)

.

The derivation from sequent 1 to 2 (also the derivation from 14 to 15) is according to the rule (Sub):
Γ ⇒ Δ

Γ [𝑒/𝑥] ⇒ Δ[𝑒/𝑥]
(Sub)

,

where the function (·) [𝑒/𝑥] is an instantiation of the abstract subsitution defined in Definition 4.12. For any label 𝜎 ,

𝜎 [𝑒/𝑥] returns the label by substituting each free variable 𝑥 of 𝜎 with term 𝑒 . We observe that 𝜎1 = 𝜎2 [0/𝑚], so sequent
1 is a special case of sequent 2 by substitution (·) [0/𝑚]. Intuitively, label 𝜎2 captures the program configuration after

Manuscript submitted to ACM

18 Y. Zhang

the𝑚th loop (𝑚 ≥ 0) of programWP. This step is crucial as starting from sequent 2, we can find a bud node — 16 — that

is identical to node 2.

The derivation from sequent 2 to {3, 4} provides a lemma: 𝜎2 : (𝑛 > 0 ∨ 𝑛 ≤ 0), which is trivially valid. Sequent 16

indicates the end of the (𝑚 + 1)th loop of program WP. From node 10 to 16, we transform the formulas on the left side

into a trivial logical equivalent form in order to apply rule (Sub) from sequent 14 to 15. Sequent 14 is a special case of

sequent 15 since 𝜎4 = 𝜎2 [𝑚 + 1/𝑚].
The whole proof tree is cyclic because the only derivation path: 2, 4, 5, 9, 10, 11, 14, 15, 16, 2, ... has a progressive

derivation trace whose elements are underlined in Table 3.

One feature of the above deduction process is that the loop structure of the while programWP (i.e. while...do...end) is

reflected in the cyclic derivation tree itself. To reason about WP one does not need the inference rule for decomposing

the loop structure. This is useful especially in program models in which loop structures are usually implicit, such

as CCS-like process algebras [38, 39] and imperative synchronous languages [12, 55]. DL𝔭 provides an incremental

reasoning in which we can avoid prior program transformations as done in work like [9, 55].

6.2 Lifting Rules From FODL

Two examples in DL𝔭-WP are given to illustrate how the existing inference rules from the theory of FODL (cf. [29]) can

be applied for deriving the compositional while programs through the lifting processes as defined in Section 5.5.

In FODL, consider the rule

Γ ⇒ [𝛼] [𝛽]𝜙,Δ
Γ ⇒ [𝛼 ; 𝛽]𝜙,Δ

([;])
,

which means that to prove formula [𝛼 ; 𝛽]𝜙 , we only need to prove formula [𝛼] [𝛽]𝜙 in which program 𝛼 is firstly

proved separated from program 𝛽 . It comes from the valid formula [𝛼] [𝛽]𝜙 → [𝛼 ; 𝛽]𝜙 , acting as a compositional rule

appearing in many dynamic logic calculi that are based on FODL (e.g. [7]). By Proposition 5.10, in DL𝔭-WP, we can lift

([;]) as a rule
𝜎 : Γ ⇒ 𝜎 : [𝛼] [𝛽]𝜙, 𝜎 : Δ

𝜎 : Γ ⇒ 𝜎 : [𝛼 ; 𝛽]𝜙, 𝜎 : Δ
(𝜎 [;])

,

where 𝜎 is a free configuration in free(L, Γ ∪ Δ ∪ {[𝛼] [𝛽]𝜙, [𝛼 ; 𝛽]𝜙}). As an additional rule, in system 𝑃𝑟dlp, (𝜎 [;])
provides a compositional reasoning for sequential programs. It is useful when verifying a property like Γ, 𝜎 ′ : [𝛽]𝜙 ⇒
𝜎 : [𝛼 ; 𝛽]𝜙,Δ, in which we might finish the proof by only symbolic executing program 𝛼 as:

Γ, 𝜎 ′ : [𝛽]𝜙 ⇒ 𝜎 ′ : [𝛽]𝜙,Δ
(ax)

Γ, 𝜎 ′ : [𝛽]𝜙 ⇒ 𝜎 ′ : [↓] [𝛽]𝜙,Δ
([↓])

... ([𝛼]𝑅)
.
.
.
....

Γ, 𝜎 ′ : [𝛽]𝜙 ⇒ 𝜎 : [𝛼] [𝛽]𝜙,Δ
([𝛼]𝑅)

Γ, 𝜎 ′ : [𝛽]𝜙 ⇒ 𝜎 : [𝛼 ; 𝛽]𝜙,Δ
(𝜎 [;])

,

especially when verifying the program 𝛽 can be very costly.

Another example is the rule

𝜙 ⇒ 𝜓

[𝛼]𝜙 ⇒ [𝛼]𝜓
([Gen])

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 19

Γ ⇒ (𝑥 := 𝑒, 𝜎) −→ (↓, 𝜎𝑥𝑒),Δ
(𝑥 :=𝑒)

Γ ⇒ 𝜎 : 𝜙,Δ

Γ ⇒ (𝜙?, 𝜎) −→ (↓, 𝜎),Δ
(𝜙?)

Γ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′),Δ
Γ ⇒ (𝛼 ; 𝛽, 𝜎) −→ (𝛼 ′ ; 𝛽, 𝜎 ′),Δ

1 (;)
Γ ⇒ (𝛼, 𝜎) −→ (↓, 𝜎 ′),Δ

Γ ⇒ (𝛼 ; 𝛽, 𝜎) −→ (𝛽, 𝜎 ′),Δ
(;↓)

Γ ⇒ (𝛼 ∪ 𝛽, 𝜎) −→ (𝛼, 𝜎),Δ
(∪ 1)

Γ ⇒ (𝛼 ∪ 𝛽, 𝜎) −→ (𝛽, 𝜎),Δ
(∪ 2)

Γ ⇒ (𝛼∗, 𝜎) −→ (𝛼 ;𝛼∗ ∪ true?, 𝜎),Δ
2 (∗)

Table 4. Partial Rules of (Prop)fodl for Program Transitions of Regular Programs

for generating modality [·], which were used for deriving the structural rule of star regular programs in FODL (cf. [29]).

By Proposition 5.10, we lift ([Gen]) as the following rule:

𝜎 : 𝜙 ⇒ 𝜎 : 𝜓

𝜎 : [𝛼]𝜙 ⇒ 𝜎 : [𝛼]𝜓
(𝜎 [Gen])

,

where 𝜎 ∈ free(L, {[𝛼]𝜙, [𝛼]𝜓, 𝜙,𝜓 }). It is useful, for example, when deriving a property 𝜎 : [𝛼]⟨𝛽⟩𝜙 ⇒ 𝜎 : [𝛼]⟨𝛽 ′⟩𝜓 ,
where we can skip the derivation of program 𝛼 as follows:

𝜎 : ⟨𝛽⟩𝜙 ⇒ 𝜎 : ⟨𝛽 ′⟩𝜓
𝜎 : [𝛼]⟨𝛽⟩𝜙 ⇒ 𝜎 : [𝛼]⟨𝛽 ′⟩𝜓

(𝜎 [Gen])
,

and directly focus on deriving the programs 𝛽 and 𝛽 ′.

From these two examples it can be seen that in practical derivations, lifting process can be used to reduce the burden

of certain verifications.

6.3 Instantiation of DL𝔭 in FODL Theory

We instantiate DL𝔭 with the theory of FODL. The resulted theory, namely DL𝔭-FODL, provides an alternative way of

reasoning about FODL formulas through symbolically executing regular programs.

The instantiation process mainly follows that for while programs as we have seen in Example 4.4, 4.9, 4.10 and 5.2,

where the only differences are: (1) the parameter P is instantiated as the set of regular programs (Section 3), denoted by

Pfodl; (2) the program behaviours are captured by a set of rules for regular programs, denoted by (Prop)fodl, whose rules
for the part of the program transitions of regular programs are shown in Table 4. And we omit the part of the rules for

program terminations of regular programs.

It is interesting to compare our proof system: (𝑃𝑟dlp)fodl =𝑑𝑓 𝑃𝑟ldlp ∪ (Prop)fodl for FODL with the traditional proof

system of FODL (cf. [29]). By simple observations, we can see that for non-star regular programs, our proof system can

do what the traditional proof system can. For example, an FODL formula

[(𝛼 ; 𝛽) ∪ 𝛼]𝜙,

Manuscript submitted to ACM

20 Y. Zhang

where let 𝛼 =𝑑𝑓 (𝑥 := 𝑥 + 1) and 𝛽 =𝑑𝑓 (𝑦 := 0), can be derived in the following process in the traditional proof system

of FODL by using certain rules:

𝑥 ≥ 0 ⇒ [𝛽]𝑥 + 1 > 0

𝑥 ≥ 0 ⇒ [𝛼] [𝛽]𝑥 > 0

(𝑥 :=𝑒)

𝑥 ≥ 0 ⇒ [𝛼 ; 𝛽]𝑥 > 0

(;)
𝑥 ≥ 0 ⇒ [𝛼]𝑥 > 0

𝑥 ≥ 0 ⇒ [(𝛼 ; 𝛽) ∪ 𝛼]𝑥 > 0

(∪)
.

In (𝑃𝑟dlp)fodl, correspondingly, we can find a logical equivalent labeled version:

{𝑥 ↦→ 𝑡} : 𝑥 ≥ 0 ⇒ {𝑥 ↦→ 𝑡} : [(𝛼 ; 𝛽) ∪ 𝛼]𝑥 > 0

and have the following derivations by applying the rule ([𝛼]𝑅) and using the corresponding operational rules in

(Prop)fodl (which are not shown below):

{𝑥 ↦→ 𝑡} : 𝑥 ≥ 0 ⇒ {𝑥 ↦→ 𝑡 + 1} : [𝛽]𝑥 > 0

{𝑥 ↦→ 𝑡} : 𝑥 ≥ 0 ⇒ {𝑥 ↦→ 𝑡} : [𝛼 ; 𝛽]𝑥 > 0

([𝛼]𝑅)
{𝑥 ↦→ 𝑡} : 𝑥 ≥ 0 ⇒ {𝑥 ↦→ 𝑡} : [𝛼]𝑥 > 0

{𝑥 ↦→ 𝑡} : 𝑥 ≥ 0 ⇒ {𝑥 ↦→ 𝑡} : [(𝛼 ; 𝛽) ∪ 𝛼]𝑥 > 0

([𝛼]𝑅)
.

Especially, we are interested in whether (𝑃𝑟dlp)fodl (w.r.t. a suitable (Prop)fodl for which we only give a part of the

rules here), like the traditional proof system of FODL, is complete related to the arithmetical theory of integers. One way

to prove this, as we can see now, is by applying our conditional completeness result for DL𝔭 proposed in Section 7.2, in

which the crucial step is showing that regular programs in the proof system (𝑃𝑟dlp)fodl is well-behaved (Definition 7.14).

More of these aspects will be discussed in detail in our future work.

The heterogeneity of the verification framework of DL𝔭 can be reflected from this example. Although while programs

are a subset of regular programs in the context of our discussion (see Section 3), the while programs have its own

set of the inference rules for their program transitions (Table 1), which is different from those for regular programs

(Table 4). Our DL𝔭 formulas provide a convenient way to compare the behaviours of different models. For example,

given a regular programWP𝑟 which is syntactically equivalent toWP (Example 4.4):

WP𝑟 =𝑑𝑓 ((𝑛 > 0)? ; 𝑠 := 𝑠 + 𝑛 ;𝑛 := 𝑛 − 1)∗ ;¬(𝑛 > 0)?,

we want to verify that whether their behaviours lead to the same result according to their own operational semantics.

This property can be described as a DL𝔭 formula as follows:

· ⇒ 𝜎 : [WP] [WP′𝑟] (𝑠 = 𝑠′ ∧ 𝑛 = 𝑛′),

where 𝜎 = {𝑠 ↦→ 𝑡, 𝑛 ↦→ 𝑁, 𝑠′ ↦→ 𝑡, 𝑛′ ↦→ 𝑁 };WP′𝑟 is obtained fromWP𝑟 by replacing all appearances of the variables

𝑠, 𝑛 with their fresh counterparts 𝑠′, 𝑛′ in order to avoid variable collisions; 𝑡, 𝑁 are fresh variables other than 𝑠, 𝑛, 𝑠′, 𝑛′.

Intuitively, the formula says that if the inputs of WP and WP𝑟 are the same, after running them separately (without

interactions), their outputs are the same.

6.4 An Encoding of Process Logic in DL𝔭

DL𝔭 allows even more complex labels and formulas: the labels can be more than simple program states, while the

formulas can be more than simple static ones (which is either true or false at a world). Below, we give a sketch of a

possible encoding of a first-ordered version of the theory of process logic [28] (PL) in DL𝔭, namely DL𝔭-PL. DL𝔭-PL is

able to specify and reason about progressive behaviours of programs using temporal formulas. Compared to Hoare

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 21

logic, it is more suitable for reactive systems [26], in which a program may never terminate and we care more about if a

property holds on an intermediate state.

Process logic can be seen as a type of dynamic logics in which the semantics of formulas is defined in terms of paths

rather than worlds. The form [𝛼]𝜙 of a PL dynamic formula inherits from that of PDL, where 𝛼 is a regular program

just as in PDL. Formula 𝜙 is a temporal formula defined such that (1) any atomic proposition 𝑝 is a temporal formula;

(2) f 𝜙 and 𝜙 suf 𝜓 are temporal formulas, provided that 𝜙 and 𝜓 are temporal formulas; (3) ¬𝜙 , 𝜙 ∧𝜓 are temporal

formulas, if 𝜙 and𝜓 are temporal formulas. The semantics of a regular program and a temporal formula is thus given

by paths of worlds. For a regular program, its semantics corresponds to the set of its execution paths. For a temporal

formula, given a path 𝑡𝑟 , its semantics is defined as follows:

1. 𝑡𝑟 |= 𝑝 , if 𝑡𝑟𝑏 |= 𝑝;
2. 𝑡𝑟 |= f 𝜙 , if 𝑡𝑟𝑏 |= 𝜙 ;
3. 𝑡𝑟 |= 𝜙 suf𝜓 , if there is a path 𝑡𝑟 ′ such that (i) 𝑡𝑟 ′ ≺𝑠 𝑡𝑟 and 𝑡𝑟

′ |=𝜓 , and (ii) for all paths 𝑡𝑟 ′′ with 𝑡𝑟 ′ ≺𝑠 𝑡𝑟
′′ ≺𝑠 𝑡𝑟 ,

𝑡𝑟 ′′ |= 𝜙 ;
4. 𝑡𝑟 |= ¬𝜙 , if 𝑡𝑟 ̸ |= 𝜙 , and 𝑡𝑟 |= 𝜙 ∧𝜓 , if 𝑡𝑟 |= 𝜙 and 𝑡𝑟 |=𝜓 .

Note that the operators f and suf are sufficient to express the meaning of the usual temporal operators (cf. [28]), for

example the “next” operator: n𝜙 =𝑑𝑓 false suf 𝜙 , the “future” operator: ^𝜙 =𝑑𝑓 𝜙 ∨ (true suf 𝜙), etc. Based on the

semantics of temporal formulas, the semantics of a dynamic PL formula [𝛼]𝜙 is defined w.r.t. a path 𝑡𝑟 as:

𝑡𝑟 |= [𝛼]𝜙, if for all execution paths 𝑡𝑟 ′ of 𝛼 , 𝑡𝑟 ′ · 𝑡𝑟 |= 𝜙.

Our instantiation process is almost the same as DL𝔭-FODL, except that we choose F to be the set of temporal formulas

introduced above, denoted by Fpl. And we choose a different set of labels named Lpl in which each label is defined as a

form that captures the meaning of a sequence of the configurations in L𝑊 :

𝜎1𝜎2 ...𝜎𝑛 (𝑛 ≥ 1), 𝜎𝑖 ∈ L𝑊 (1 ≤ 𝑖 ≤ 𝑛).

Besides, similar to the choosing of (Prop)fodl, we propose a set (Prop)pl of rules for the regular programs. In (Prop)pl,
the forms of the rules for the program transitions are the same as those in (Prop)fodl (see Table 4), except that (1) we
replace each configuration with the configuration in Lpl, and (2) we have the following rule for assignments:

Γ ⇒ (𝑥 := 𝑒, 𝑙) −→ (↓, 𝑙 (𝜎𝑛)𝑥𝑒),Δ
(𝑥 :=𝑒)

, where 𝑙 = 𝜎1𝜎2 ...𝜎𝑛 (𝑛 ≥ 1)

where instead we append the current result (𝜎𝑛)𝑥𝑒 to the tail of the current sequence 𝑙 of the configurations in L𝑊 .

Consider an example of programs’ temporal properties:

𝜎 : [𝛼 ;𝛼]^𝑥 > 0,

with 𝜎 = {𝑥 ↦→ −1}, 𝛼 = (𝑥 := 𝑥 + 1). It says that along the execution path of 𝛼 ;𝛼 , 𝑥 > 0 eventually holds. By the rules

in (Prop)pl, we have the following derivation:

· ⇒ 𝜎𝜎 ′𝜎 ′′ : ^𝑥 > 0

· ⇒ 𝜎𝜎 ′𝜎 ′′ : [↓]^𝑥 > 0

([↓])

· ⇒ 𝜎𝜎 ′ : [𝛼]^𝑥 > 0

([𝛼]𝑅)

· ⇒ 𝜎 : [𝛼 ;𝛼]^𝑥 > 0

([𝛼]𝑅)
,

where 𝜎 ′ = {𝑥 ↦→ 0}, 𝜎 ′′ = {𝑥 ↦→ 1}.
Manuscript submitted to ACM

22 Y. Zhang

𝑙𝑏 : 𝜙

𝑙 : f 𝜙
(f)

Γ ⇒ 𝑙 : 𝜙,Δ Γ ⇒ 𝑙 : 𝜙 suf𝜓,Δ
Γ ⇒ 𝜎𝑙 : 𝜙 suf𝜓,Δ

(suf 𝑅1)
Γ ⇒ 𝑙 : 𝜓,Δ

Γ ⇒ 𝜎𝑙 : 𝜙 suf𝜓,Δ
(suf 𝑅2)

Γ, 𝑙 : 𝜙, 𝑙 : 𝜙 suf 𝜓 ⇒ Δ Γ, 𝑙 : 𝜓 ⇒ Δ

Γ, 𝜎𝑙 : 𝜙 suf 𝜓 ⇒ Δ
(suf 𝐿)

in the above rules, 𝑙 ∈ L𝑊 L∗
𝑊
, 𝜎 ∈ L𝑊 .

Table 5. Rules for Labeled Temporal Formulas in DL𝔭-PL

Unlike the formulas of Fafo in DL𝔭-WP and DL𝔭-FODL, in DL𝔭-PL we can further derive labeled temporal formulas

(e.g. 𝜎𝜎 ′𝜎 ′′ : ^𝑥 > 0) using the following additional rules shown in Table 5. These rules are directly according to the

semantics of the operators f and suf .
A cyclic derivation for iterative programs (like 𝛼∗) in DL𝔭-PL, however, requires higher-ordered label structures

together with a suitable instantiation of the abstract substitutions as defined in Definition 4.12. Our future work will

discuss more about it, as well as the analysis of the (relative) completeness of DL𝔭-PL and its comparison to the

traditional theory of PL.

7 Analysis of Soundness and Completeness of DL𝔭

In this section, we analyze the soundness and completeness of the proof system 𝑃𝑟dlp. Currently, we consider the

soundness under a restriction on the program behaviours of P (Definition 7.2). However, as analyzed below in detail,

the set of programs under the restriction is still a rich one. For the completeness, since DL𝔭 is not a specific logic,

generally, it is impossible to discuss about its completeness without any restrictions on the parameters of DL𝔭. Instead,

we study under which conditions (Definition 7.13 and 7.14) can we obtain a completeness result relative to the labeled

non-dynamic formulas.

Section 7.1 discusses about the soundness of 𝑃𝑟dlp, while Section 7.2 discusses about its completeness.

7.1 Conditional Soundness of DL𝔭

We first introduce the concept of minimum execution paths.

Definition 7.1. An execution path (Definition 4.5)𝑤1 ...𝑤𝑛 (𝑛 ≥ 1) is called “minimum”, if there are no two relations

𝑤𝑖

𝛼𝑖 /·−−−→ · and𝑤 𝑗

𝛼 𝑗 /·−−−→ · for some 1 ≤ 𝑖 < 𝑗 < 𝑛 such that𝑤𝑖 =𝑤 𝑗 and 𝛼𝑖 = 𝛼 𝑗 .

Intuitively, in a minimum execution path, there are no two relations starting from the same world and program.

The restriction condition is stated in the following definition.

Definition 7.2 (Termination Finiteness). Starting from a world 𝑤 ∈ S and a program 𝛼 ∈ P, there is only a finite

number of minimum execution paths (of the form:𝑤
𝛼/·
−−→ ...).

The programs satisfying termination finiteness are in fact a rich set, including, for example, all the programs whose

behaviour is deterministic, such as while programs discussed in this paper, programming languages like Esterel, C, Java,

etc. There exist non-deterministic programs that obviously fall into this category. For example, automata that have

non-deterministic transitions but have a finite number of states. More on this restriction will be discussed in our future

work.

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 23

Theorem 7.3 (Conditional Soundness of DL𝔭). If the programs in P satisfy the termination finiteness property, then

for any labeled formula 𝜎 : 𝜙 ∈ 𝔉ldlp, 𝑃𝑟dlp ⊢ (· ⇒ 𝜎 : 𝜙) implies |= 𝜎 : 𝜙 .

Main Idea for Proving the Soundness. We follow the main idea behind [15] to prove Theorem 7.3 by contradiction.

The key point is that, if the conclusion of a cyclic proof is invalid, then by the soundness of all the rules in 𝑃𝑟ldlp

(Theorem 5.3), there must exist an invalid derivation path in which each node is invalid, and one of its progressive

traces leads to an infinite descent sequence of some well-founded set (introduced below), which violates the definition

of the well-foundedness (cf. [18]) itself.

Below we firstly introduce the well-founded relation ⪯𝑚 we rely on, then we focus on the main skeleton of proving

Theorem 7.3. Other proof details are given in Appendix A.

Well-foundedness & Relation ⪯𝑚 . Given a set 𝑆 and a partial-order relation ⪯ on 𝑆 , ⪯ is called a well-founded

relation over 𝑆 , if for any element 𝑎 in 𝑆 , there is no infinite descent sequence: 𝑎 ≻ 𝑎1 ≻ 𝑎2 ≻ ... in 𝑆 . Set 𝑆 is called a

well-founded set w.r.t. ⪯.

Definition 7.4 (Relation ⪯𝑚). Given two finite sets C1 and C2 of finite execution paths, C1 ⪯𝑚 C2 is defined if either

(1) C1 = C2; or (2) set C1 can be obtained from C2 by replacing one or more elements of C2 each with a finite number of

elements, such that for each replaced element 𝑡𝑟 , its replacements 𝑡𝑟1, ..., 𝑡𝑟𝑛 (𝑛 ≥ 1) in C1 are proper suffixes of 𝑡𝑟 .

In Definition 7.4, note that we can replace an element of C2 with an empty execution path whose length is 0. And if

we do so, it is equivalent to that we remove an element from C2.

Proposition 7.5. ⪯𝑚 is a partial-order relation.

The proof of Proposition 7.5 is given in Appendix A.

Example 7.6. Let 𝐶1 = {𝑡𝑟1, 𝑡𝑟2, 𝑡𝑟3}, where 𝑡𝑟1 =𝑑𝑓 𝑤𝑤1𝑤2𝑤3𝑤4, 𝑡𝑟2 =𝑑𝑓 𝑤𝑤1𝑤5𝑤6𝑤7 and 𝑡𝑟3 =𝑑𝑓 𝑤𝑤8; 𝐶2 =

{𝑡𝑟 ′
1
, 𝑡𝑟 ′

2
}, where 𝑡𝑟 ′

1
=𝑑𝑓 𝑤1𝑤2𝑤3𝑤4, 𝑡𝑟

′
2
=𝑑𝑓 𝑤1𝑤5𝑤6𝑤7. We see that 𝑡𝑟 ′

1
is a proper suffix of 𝑡𝑟1 and 𝑡𝑟

′
2
is a proper

suffix of 𝑡𝑟2. 𝐶2 can be obtained from 𝐶1 by replacing 𝑡𝑟1 and 𝑡𝑟2 with 𝑡𝑟
′
1
and 𝑡𝑟 ′

2
respectively, and removing 𝑡𝑟3. Hence

𝐶2 ⪯𝑚 𝐶1. Since 𝐶1 ≠ 𝐶2, 𝐶2 ≺𝑚 𝐶1.

Proposition 7.7. Relation ⪯𝑚 is a well-founded relation.

We omit the proof of Proposition 7.7. Relation ⪯𝑚 is just a special case of the “multi-set ordering” introduced in [18],

where it has been proved to be well-founded. Intuitively, we observe that for two sets C1 and C2 such that C1 ≺𝑚 C2, for

each set 𝐷𝑡𝑟 of the paths in C1 that replaces an element 𝑡𝑟 in C2, the maximum length of the elements of 𝐷𝑡𝑟 is strictly

smaller than that of 𝑡𝑟 . By that C2 is finite, we can see that such a replacement decreases the number of the paths that

have the maximum length of the elements in C2.

Proof Skeleton of Theorem 7.3. Below we give the main skeleton of the proof by skipping the details of the proof

of Lemma 7.9, which can be found in Appendix A.

Following the main idea above, we first introduce the concept of the “execution paths of a dynamic DL𝔭 formula”.

They are the elements of a well-founded relation ⪯𝑚 . Next, we propose Lemma 7.9, which plays a key role in the proof

of Theorem 7.3 that follows.

Definition 7.8 (Execution Paths of Dynamic Formulas). Given a world𝑤 ∈ S and a dynamic formula 𝜙 , the execution

paths EX(𝑤,𝜙) of 𝜙 w.r.t.𝑤 is inductively defined according to the structure of 𝜙 as follows:

Manuscript submitted to ACM

24 Y. Zhang

1. EX(𝑤, [𝛼]𝐹) =𝑑𝑓 mex(𝑤, 𝛼), where 𝐹 ∈ F;
2. EX(𝑤, [𝛼]𝜙1) =𝑑𝑓 mex(𝑤, 𝛼) ∪ {𝑡𝑟1 · 𝑡𝑟2 | 𝑡𝑟1 ∈ mex(𝑤, 𝛼), 𝑡𝑟2 ∈ EX((𝑡𝑟1)𝑒 , 𝜙1)};
3. EX(𝑤,¬𝜙1) =𝑑𝑓 EX(𝑤,𝜙1);
4. EX(𝑤,𝜙1 ∧ 𝜙2) =𝑑𝑓 EX(𝑤,𝜙1) ∪ EX(𝑤,𝜙2).

Where mex(𝑤, 𝛼) =𝑑𝑓 {𝑤...𝑤 ′ | 𝑤
𝛼/·
−−→ ...

·/↓
−−→ 𝑤 ′

is a min. exec. path for some𝑤 ′ ∈ S} is the set of all minimum paths

of 𝛼 starting from world𝑤 .

In Definition 7.8, an execution path of a dynamic formula may be concatenated by several execution paths that belong

to different programs in a sequence of modalities. As seen in the proof of Lemma 7.9 (Appendix A), this consideration is

necessary because a dynamic formula may contain more than one modality (e.g. [𝛼] [𝛽]𝜙). It is also one of the main

differences between our proof and the proof given in [61].

In the following, we call 𝔪 ∈ M a counter-example mapping of a node 𝜈 , if it makes 𝜈 invalid.

Lemma 7.9. In a cyclic proof (where there is at least one derivation path), let (𝜎 : 𝜙, 𝜎 ′ : 𝜙 ′) be a step of a derivation trace
over a derivation (𝜈, 𝜈 ′) of an invalid derivation path, where 𝜙, 𝜙 ′ ∈ 𝔉𝑑𝑙𝑝 . For any set EX(𝔪(𝜎), 𝜙) of 𝜎 : 𝜙 w.r.t. a counter-

example mapping 𝔪 of 𝜈 , there exists a counter-example mapping 𝔪′ of 𝜈 ′ and a set EX(𝔪′ (𝜎 ′), 𝜙 ′) of 𝜎 ′ : 𝜙 ′ such that

EX(𝔪′ (𝜎 ′), 𝜙 ′) ⪯𝑚 EX(𝔪(𝜎), 𝜙). Moreover, if (𝜎 : 𝜙, 𝜎 ′ : 𝜙 ′) is a progressive step, then EX(𝔪′ (𝜎 ′), 𝜙 ′) ≺𝑚 EX(𝔪(𝜎), 𝜙).

Intuitively, Lemma 7.9 helps us discover suitable execution-path sets imposed by a well-founded relation ⪯𝑚 between

them in an invalid derivation path.

Based on Proposition 7.7 and Lemma 7.9, we give the proof of Theorem 7.3 as follows.

Proof of Theorem 7.3. Let 𝜈 = (· ⇒ 𝜎 : 𝜙). By contradiction, suppose ̸ |= 𝜎 : 𝜙 , that is, 𝜈 is invalid. Then by the

soundness of each rule in 𝑃𝑟dlp (Theorem 5.3), there exists an invalid derivation path 𝑝 from 𝜈 (where every sequent is

invalid). Since 𝑃𝑟dlp ⊢ 𝜈 (i.e., a cyclic proof tree is formed to prove the conclusion 𝜈), let 𝜏1𝜏2 ...𝜏𝑘 ... be a progressive trace

over 𝑝 of the form: 𝜈...𝜈1𝜈2 ...𝜈𝑘 ... (𝑘 ≥ 1), where each formula 𝜏𝑖 is in 𝜈𝑖 (𝑖 ≥ 1). Let 𝜏𝑖 =𝑑𝑓 𝜎𝑖 : 𝜙𝑖 .

Since 𝜈1 is invalid, let𝔪1 be one of its counter-example mappings. By Lemma 7.9, from EX(𝔪1 (𝜎1), 𝜙1), there exists an
infinite sequence of sets EX1, ..., EX𝑘 , ... (𝑘 ≥ 1), where each EX𝑖 =𝑑𝑓 EX(𝔪𝑖 (𝜎𝑖), 𝜙𝑖) (𝑖 ≥ 1) with 𝔪𝑖 a counter-example

mapping of node 𝜈𝑖 , and which satisfies that EX1 ⪰𝑚 ... ⪰𝑚 EX𝑘 ⪰𝑚 Moreover, since trace 𝜏1𝜏2 ...𝜏𝑘 ... is progressive

(Definition 5.5), there must be an infinite number of 𝑗 ≥ 1 such that EX𝑗 ≻𝑚 EX𝑗+1. This thus forms an infinite descent

sequence w.r.t. ≺𝑚 , violating the well-foundedness of relation ⪯𝑚 (Proposition 7.7).

□

7.2 Conditional Completeness of DL𝔭

We propose two sufficient conditions for the relative completeness of DL𝔭: 1) that the program models of DL𝔭 always

have finite expressions (Definition 7.13); and 2) that their loop programs are always well-behaved (Definition 7.14)

during the reasoning process. A loop program is a program that eventually reaches itself during a sequence of symbolic-

execution reasoning under a label.

Below we first introduce these conditions, under them we then prove the relative completeness of DL𝔭. We only give

an outline and put the technical details of the proof in Appendix A.

Definition 7.10 (Program Sequences). Given a context Γ, a program 𝛼 ∈ P and a label 𝜎 ∈ L, a (potentially infinite)

sequence: Γ : (𝛼1, 𝜎1, Γ1) (𝛼2, 𝜎2, Γ2)...(𝛼𝑛, 𝜎𝑛, Γ𝑛) ... (1 ≤ 𝑛 < ∞, 𝛼1 = 𝛼 , 𝜎1 = 𝜎), called an “𝛼 sequence”, is defined if there

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 25

is a sequence of derivations in system 𝑃𝑟dlp as follows: 𝑃𝑟dlp ⊢ (Γ1 ⇒ (𝛼1, 𝜎1) −→ (𝜎2, 𝜎2)), 𝑃𝑟dlp ⊢ (Γ2 ⇒ (𝛼2, 𝜎2) −→
(𝜎3, 𝜎3)), ..., 𝑃𝑟dlp ⊢ (Γ𝑛−1 ⇒ (𝛼𝑛−1, 𝜎𝑛−1) −→ (𝛼𝑛, 𝜎𝑛)), ..., which satisfies that |= (Γ1 ⇒ Γ) and |= (Γ𝑛 ⇒ Γ𝑛−1) for all
𝑛 ≥ 2.

We call a sequence Γ : (𝛼1, 𝜎1) (𝛼2, 𝜎2)...(𝛼𝑛, 𝜎𝑛) ... a “core 𝛼 sequence” if there exist Γ1, Γ2, ..., Γ𝑛, ... such that Γ :

(𝛼1, 𝜎1, Γ1) (𝛼2, 𝜎2, Γ2)...(𝛼𝑛, 𝜎𝑛, Γ𝑛)... is an 𝛼 sequence.

Intuitively, starting from (𝛼, 𝜎) under context Γ, an 𝛼 sequence is a sequence of derivations where in each step, the

context can only be strengthen from Γ. By the soundness of 𝑃𝑟dlp w.r.t.𝔉pt (see Definition 5.1), each derivation of an 𝛼

sequence is actually a symbolic execution step of the program.

Definition 7.11 (Program Loop Sequences). An “𝛼-loop sequence” of a program𝛼 ∈ P is an𝛼 sequence: Γ : (𝛼1, 𝜎1, Γ1) ...(𝛼𝑛, 𝜎𝑛, Γ𝑛)
(𝑛 ≥ 1) such that 𝛼1 = 𝛼𝑛 = 𝛼 , and 𝛼𝑖 ≠ 𝛼 𝑗 for any other 𝛼𝑖 and 𝛼 𝑗 , with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

Example 7.12. In the instantiation theory DL𝔭-FODL as defined in Section 6.3, let 𝛼 =𝑑𝑓 (𝑥 := 𝑥 + 1), 𝛽 =𝑑𝑓 (𝑦 := 0),
𝜎 = {𝑥 ↦→ 𝑡}, then for the program𝛼∗ ; 𝛽 , we have an𝛼 sequence: ∅ : (𝛼∗ ; 𝛽, 𝜎, ∅)((𝛼 ;𝛼∗∪true?) ; 𝛽, 𝜎, ∅)(𝛼 ;𝛼∗ ; 𝛽, 𝜎, ∅)(𝛼∗ ; 𝛽, 𝜎 ′, ∅),
where 𝜎 ′ = {𝑥 ↦→ 𝑡 + 1}. It corresponds to the following derivations:

(𝑃𝑟dlp)fodl ⊢ (· ⇒ (𝛼∗ ; 𝛽, 𝜎) −→ ((𝛼 ;𝛼∗ ∪ true?), 𝜎),

(𝑃𝑟dlp)fodl ⊢ (· ⇒ ((𝛼 ;𝛼∗ ∪ true?) ; 𝛽, 𝜎) −→ (𝛼 ;𝛼∗ ; 𝛽, 𝜎)),

(𝑃𝑟dlp)fodl ⊢ (· ⇒ (𝛼 ;𝛼∗ ; 𝛽, 𝜎) −→ (𝛼∗ ; 𝛽, 𝜎 ′))

according to the corresponding rules in Table 4. This 𝛼 sequence is also a loop one.

Definition 7.13 (Expression Finiteness Property). For a program 𝛼 ∈ P, there is a natural number 𝑁𝛼 such that in each

𝛼 sequence under a label 𝜎 ∈ L and a context Γ: Γ : (𝛼1, 𝜎1, Γ1) ...(𝛼𝑛, 𝜎𝑛, Γ𝑛) ... (1 ≤ 𝑛 < ∞, 𝛼1 = 𝛼 , 𝜎1 = 𝜎), the number

of the different programs among 𝛼1, ..., 𝛼𝑛, ... is no greater than 𝑁𝛼 .

Definition 7.13 means that as a program proceeds, it eventually reaches to the form of itself in a limit number of

steps. Most program models in practice satisfy this property. But there are exceptions, for example, the programs in

𝜋−calculus with the replication operator (cf. [39]).

Definition 7.14 (Well-behaved Loop Programs). A program 𝛼 ∈ P is called a “loop program”, if there exists an “𝛼-loop

sequence” for some label and context.

A loop program 𝛼 is “well-behaved”, if for any label 𝜎 ∈ L and context Γ, there exist a label 𝜎 ′ ∈ L, a context Γ′ and a
substitution 𝜂 : L → L satisfying the following conditions:

1. 𝜎 = 𝜂 (𝜎 ′) and Γ = 𝜂 (Γ′);
2. |= (Γ ⇒ 𝜎 ⇓ 𝛼) implies |= (Γ′ ⇒ 𝜎 ′ ⇓ 𝛼);
3. For each 𝛼-loop sequence: Γ′ : (𝛼, 𝜎 ′, Γ1)...(𝛼, 𝜎 ′′, Γ𝑛) (𝑛 ≥ 1), there exist a context Γ′′ and a substitution 𝜉 : L → L

such that Γ′′ = 𝜉 (Γ′), 𝜎 ′′ = 𝜉 (𝜎 ′) and |= (Γ𝑛 ⇒ Γ′′).

The well-behaved property describes the “ability” of a loop program𝛼 to form back-links along its symbolic executions.

To be more specific, for a label 𝜎 ∈ L, it is possible to find a suitable label 𝜎 ′ from which 𝜎 can be obtained through

substitutions, and for every symbolic execution starting from (𝛼, 𝜎 ′), we can go back to (𝛼, 𝜎 ′) through substitutions.

The 𝜎 ′ here plays the same role of the loop invariants in the normal deduction approaches of program logics.

Manuscript submitted to ACM

26 Y. Zhang

Theorem 7.15 (Conditional Completeness of DL𝔭). If the programs in P satisfy the expression finiteness property

and among them all loop programs are well-behaved, then for any labeled formula 𝜎 : 𝜙 ∈ 𝔉ldlp, |= 𝜎 : 𝜙 implies

𝑃𝑟dlp ⊢ (· ⇒ 𝜎 : 𝜙).

Note that the relativeness of the completeness result to labeled non-dynamic formulas is reflected by the rule (Ter)
(Table 2).

Main Idea for Proving the Completeness. To prove Theorem 7.15, we firstly reduce it to the special case of

deriving a sequent of the form Γ ⇒ [⟨𝛼⟩]𝜙 as shown in Lemma 7.16. For this step we take a similar approach from [27].

The main technical part is deriving the sequent Γ ⇒ 𝜎 : [⟨𝛼⟩]𝜙 . We proceed by a simultaneous induction on the

number of the modalities and maximum number of the forms of the programs that can appear during the derivation of

the sequent. The critical observation is that by the finiteness when executing 𝛼 (Lemma 7.17) and the well-behaved

property (Definition 7.14) it satisfies, each non-terminal derivation branch from Γ ⇒ 𝜎 : [⟨𝛼⟩]𝜙 is able to form a

back-link, which in-turn shows that the whole derivation of Γ ⇒ 𝜎 : [⟨𝛼⟩]𝜙 can form a cyclic proof.

We put the proof of Lemma 7.16 in Appendix A in details.

Lemma 7.16. Under the same conditions as in Theorem 7.15, for any valid sequent of the form: Γ ⇒ 𝜎 : [⟨𝛼⟩]𝜙 ,
𝑃𝑟dlp ⊢ (Γ ⇒ 𝜎 : [⟨𝛼⟩]𝜙).

In Lemma 7.16, “[⟨𝛼⟩]” just means either [𝛼] or ⟨𝛼⟩.

Lemma 7.17. Starting from a program 𝛼 ∈ P and a label 𝜎 ∈ L under a context Γ, there is only a finite number of core

𝛼-loop sequences.

Proof. By the finiteness of set Prop, fixing a program 𝛽 , there is a maximum number of transitions starting from

(𝛽, 𝑙) in the form of: Γ ⇒ (𝛽, 𝑙) −→ ... for all labels 𝑙 ∈ L and contexts Γ. By the expression finiteness property and the

characteristic of program loop sequences, it is not hard to see the result. □

To close this section, we give the proof of Theorem 7.15.

Proof of Theorem 7.15. For a labelled formula 𝜎 : 𝜙 , 𝜙 is semantically equivalent to a conjunctive normal form:

𝐶1 ∧ ... ∧ 𝐶𝑛 (𝑛 ≥ 1). Each clause 𝐶𝑖 (1 ≤ 𝑖 ≤ 𝑛) is a disjunction of literals: 𝐶𝑖 = 𝑙𝑖,1 ∨ ... ∨ 𝑙𝑖,𝑚𝑖
, where 𝑙𝑖, 𝑗 (1 ≤ 𝑖 ≤

𝑛, 1 ≤ 𝑗 ≤𝑚𝑖) is an atomic DL𝔭 formula or its negation. By the rules for labeled proposition logical formulas in Table 2,

to prove formula 𝜎 : 𝜙 , it is enough to show that for each clause 𝐶𝑖 , |= 𝜎 : 𝐶𝑖 implies 𝑃𝑟dlp ⊢ 𝜎 : 𝐶𝑖 . Without loss of

generality, let 𝐶𝑖 =𝜓 ∨ [⟨𝛼⟩]𝜙 . Then it is sufficient to prove 𝑃𝑟dlp ⊢ (𝜎 : ¬𝜓 ⇒ 𝜎 : [⟨𝛼⟩]𝜙). But it is just a special case
of Lemma 7.16. □

8 Related Work

Matching Logic and Its Variations. The idea of reasoning about programs based on their operational semantics is not

new. Previous work such as [17, 52, 53, 56] in the last decade has addressed this issue using theories based on rewriting

logic [37]. Matching logic [52] is based on patterns and pattern matching. Its basic form, a reachability rule 𝜑 ⇒ 𝜑 ′

(where⇒ has another meaning from its use in this paper), captures whether pattern 𝜑 ′
is reachable from pattern 𝜑 in a

given pattern reachability system. Based on matching logic, one-path and all-paths reachability logics [53, 56] were

developed by enhancing the expressive power of the reachability rule. A more powerful matching 𝜇-logic [17] was

proposed by adding a least fixpoint 𝜇-binder to matching logic.

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 27

In these theories, “patterns” are more general structures. So to encode the dynamic forms [𝛼]𝜙 of DL𝔭 requires

additional work and program transformations. On the other hand, dynamic logics like DL𝔭 provide a more direct way

to express and reason about complex before-after and temporal program properties with their modalities [·] and ⟨·⟩. In
terms of expressiveness, matching logic and one-path reachability logic cannot capture the semantics of modality [·] in
dynamic logic when the programs are non-deterministic (which means that there are more than one execution path

starting from a world and a program). We conjecture that matching 𝜇-logic can encode DL𝔭, as it has been claimed that

it can encode traditional dynamic logics (cf. [17]).

General Frameworks based on Set Theories. [40] proposed a general program verification framework based

on coinduction. Using the terminology in this paper, a program specification 𝜎 : [𝛼]𝜙 can be expressed as a pair

((𝛼, 𝜎), 𝑃 (𝜙)) in [40], with 𝑃 (𝜙) a set of program states capturing the semantics of formula 𝜙 . A method was designed

to derive a program specification in a coinductive way according to the operational semantics of (𝛼, 𝜎). Following [40],

[36] also proposed a general framework for program reasoning, but via big-step operational semantics. Unlike the

frameworks in [40] and [36] which are directly built up on mathematical set theory, DL𝔭 is in logical forms, and is

based on a cyclic deduction approach rather than coinduction. In terms of expressiveness, the meaning of modality ⟨·⟩
in DL𝔭 cannot be expressed in the framework of [40].

Updates. The structure “updates” adopted in work [6, 7, 44] are “delay substitutions” of variables and terms. They in

fact can be defined as a special case of the more general structure labels in DL𝔭 by choosing suitable label mappings

accordingly.

Logics based on Cyclic Proof Approach. The proof system of DL𝔭 relies on the cyclic proof theory which firstly

arose in [57] and was later developed in different logics such as [15, 16], and more recent work like [3, 33, 59]. [34]

proposed a complete cyclic proof system for 𝜇-calculus, which subsumes PDL [23] in its expressiveness. In [20], the

authors proposed a complete labeled cyclic proof system for PDL. Both logics in [20, 34] are propositional and cannot

be used to prove many valid formulas in particular domains, for example, the arithmetic first-order formulas in number

theory as shown in our example. The labeled form of DL𝔭 formula 𝜎 : [𝛼]𝜙 is inspired from [20], where a label is just a

variable of worlds in a traditional Kripke structure. On the other hand, the labels in DL𝔭 allow arbitrary terms from

actual program configurations.

Generalizations of Dynamic Logic. There are some recent work for generalizing the theories of dynamic logics [2,

30, 60]. [30] proposes a general dynamic logic by allowing the program models of PDL to be any forms than regular

programs. The semantics of a program is given by a set of so-called “interaction-based” behaviours, very similar to the

program transitions here. However, there, it only focuses on the building of the logic theory. No associated proof systems

were proposed. In [2], an operational version of PDL (namely OPDL) was studied. There, the proof of a dynamic formula

[𝛼]𝜙 can be reduced to the proof of formula [𝑎] [𝛽]𝜙 if 𝛼
𝑎−→ 𝛽 is a transition by doing an action 𝑎. Similar to [20], a

complete non-well-founded proof system was built for OPDL. Although in [2] it was claimed that OPDL can be adapted

to arbitrary program models, its theory was analyzed only on the propositional level and only for regular programs.

[60] develops heterogeneous dynamic logic (HDL), a theoretical framework in which different dynamic-logic theories

can be compared and jointly used. Unlike [60] which makes a systematic analysis of the integration of different theories,

the start point of our work (as well as [61]) is to facilitate the operationally-based reasoning of different programs. This

leads to the introduction of labels and the development of the cyclic reasoning in DL𝔭 as critical contributions, while the

lifting process acts as a “side technique” to compensate for the core proof system. The result of [60] offers a thorough

guide for the analysis of the completeness and other properties of the lifted theories in DL𝔭 in our future work.

Manuscript submitted to ACM

28 Y. Zhang

9 Conclusion & Future Work

In this paper, we propose a novel verification framework based on dynamic logic for reasoning about programs based

on their operational semantics. We mainly build the theory of DL𝔭 and analyze its soundness and completeness under

certain conditions. Through the examples and case studies, we have shown the potential usage of this formalism in

different aspects of program reasoning.

For future work we focus on two aspects. On the theoretical aspect, we are interested in whether we can further relax

our conditions for proving the soundness and completeness of DL𝔭. This is important to know how our framework can

be also adapted to more complex models, such as hybrid or probabilistic systems. We will further study the instantiated

theory DL𝔭-PL, as a promising first-ordered version of process logic ever built, and also DL𝔭-SP. On the practical aspect,

we are carrying out a full mechanization of DL𝔭 in Rocq [13]. Currently, we have managed to deeply embed the whole

theory of DL𝔭 (cf. [1]). To explore the potential applications of DL𝔭 in practice, we are working on applying DL𝔭 for

specifying and reasoning about different program models, like Esterel, Rust, etc.

Acknowledgment. Thiswork is partially supported by theNew Faculty Start-up Foundation of NUAA (No. 90YAT24003)

and the General Program of the National Natural Science Foundation of China (No. 62272397).

References
[1] [n. d.]. https://github.com/yrz5a/Coq-DLp.git.

[2] Matteo Acclavio, Fabrizio Montesi, and Marco Peressotti. 2024. On propositional dynamic logic and concurrency. arXiv [cs.LO] (March 2024).

[3] Bahareh Afshari, Sebastian Enqvist, and Graham E Leigh. 2022. Cyclic proofs for the first-order µ-calculus. Logic Journal of the IGPL 32, 1 (08 2022),

1–34. arXiv:https://academic.oup.com/jigpal/article-pdf/32/1/1/56586573/jzac053.pdf

[4] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, and Mattias Ulbrich. 2025. The many uses of dynamic logic. In Lecture Notes in
Computer Science. Springer Nature Switzerland, Cham, 56–82.

[5] Andrew W. Appel, Robert Dockins, and et al. 2014. Program Logics for Certified Compilers. Cambridge University Press.

[6] Bernhard Beckert and Daniel Bruns. 2013. Dynamic Logic with Trace Semantics. In CADE 2013. Springer Berlin Heidelberg, 315–329.

[7] Bernhard Beckert, Vladimir Klebanov, and Benjamin Weiß. 2016. Dynamic Logic for Java. Springer International Publishing, 49–106.
[8] Mario R.F. Benevides and L. Menasché Schechter. 2010. A Propositional Dynamic Logic for Concurrent Programs Based on the 𝜋 -Calculus. In M4M

2009. Elsevier, 49–64.
[9] Mario R. F. Benevides and L. Menasché Schechter. 2008. A Propositional Dynamic Logic for CCS Programs. In Logic, Language, Information and

Computation. Springer Berlin Heidelberg, Berlin, Heidelberg, 83–97.

[10] Gérard Berry. 1989. Programming a digital watch in Esterel v3. Technical Report RR-1032.
[11] Gérard Berry and Laurent Cosserat. 1985. The ESTEREL synchronous programming language and its mathematical semantics. In Seminar on

Concurrency. Springer Berlin Heidelberg, Berlin, Heidelberg, 389–448.

[12] Gérard Berry and Georges Gonthier. 1992. The Esterel synchronous programming language: design, semantics, implementation. Science of Computer
Programming 19, 2 (1992), 87 – 152.

[13] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions.
Springer. 1–472 pages.

[14] Denis Bogdanas and Grigore Roşu. 2015. K-Java: A Complete Semantics of Java. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for Computing Machinery, New York, NY, USA, 445–456.

https://doi.org/10.1145/2676726.2676982

[15] James Brotherston, Richard Bornat, and Cristiano Calcagno. 2008. Cyclic proofs of program termination in separation logic. SIGPLAN Not. 43, 1
(2008), 101–112.

[16] James Brotherston and Alex Simpson. 2007. Complete Sequent Calculi for Induction and Infinite Descent. In LICS 2007. 51–62.
[17] X. Chen and G. Rosu. 2019. Matching𝑚𝑢-Logic. In LICS 2019. IEEE Computer Society, 1–13.

[18] Nachum Dershowitz and Zohar Manna. 1979. Proving termination with multiset orderings. In Automata, Languages and Programming. Springer
Berlin Heidelberg, Berlin, Heidelberg, 188–202.

[19] Canh Minh Do, Tsubasa Takagi, and Kazuhiro Ogata. 2024. Automated Quantum Protocol Verification Based on Concurrent Dynamic Quantum

Logic. ACM Trans. Softw. Eng. Methodol. (Dec. 2024). Just Accepted.

[20] Simon Docherty and Reuben N. S. Rowe. 2019. A Non-wellfounded, Labelled Proof System for Propositional Dynamic Logic. In TABLEAUX 2019.
Springer International Publishing, 335–352.

Manuscript submitted to ACM

https://github.com/yrz5a/Coq-DLp.git
https://arxiv.org/abs/https://academic.oup.com/jigpal/article-pdf/32/1/1/56586573/jzac053.pdf
https://doi.org/10.1145/2676726.2676982

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 29

[21] Chucky Ellison and Grigore Rosu. 2012. An executable formal semantics of C with applications. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Philadelphia, PA, USA) (POPL ’12). Association for Computing Machinery, New York,

NY, USA, 533–544. https://doi.org/10.1145/2103656.2103719

[22] Yishai A. Feldman and David Harel. 1984. A probabilistic dynamic logic. J. Comput. System Sci. 28, 2 (1984), 193–215.
[23] Michael J. Fischer and Richard E. Ladner. 1979. Propositional dynamic logic of regular programs. J. Comput. System Sci. 18, 2 (1979), 194–211.
[24] Manuel Gesell and Klaus Schneider. 2012. A Hoare Calculus for the Verification of Synchronous Languages. In PLPV 2012 (Philadelphia, Pennsylvania,

USA). Association for Computing Machinery, 37–48.

[25] Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. 2020. Propositional Dynamic Logic for Hyperproperties. In 31st International
Conference on Concurrency Theory (CONCUR). 50:1–50:22.

[26] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. 1993. Synchronous Observers and the Verification of Reactive Systems. In Proceedings
of the Third International Conference on Methodology and Software Technology: Algebraic Methodology and Software Technology (AMAST ’93).
Springer-Verlag, Berlin, Heidelberg, 83–96.

[27] David Harel. 1979. First-Order Dynamic Logic. Lecture Notes in Computer Science (LNCS), Vol. 68. Springer.

[28] David Harel, Dexter Kozen, and Rohit Parikh. 1982. Process Logic: Expressiveness, Decidability, Completeness. J. Comput. System Sci. 25, 2 (1982),
144–170.

[29] David Harel, Dexter Kozen, and Jerzy Tiuryn. 2000. Dynamic Logic. MIT Press.

[30] Rolf Hennicker and Martin Wirsing. 2019. A Generic Dynamic Logic with Applications to Interaction-Based Systems. Springer International Publishing,
172–187.

[31] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969), 576–580.

[32] Benjamin Icard. 2024. A Dynamic Logic for Information Evaluation in Intelligence. arXiv:2405.19968 [cs.LO] https://arxiv.org/abs/2405.19968

[33] Eddie Jones, C.-H. Luke Ong, and Steven Ramsay. 2022. CycleQ: an efficient basis for cyclic equational reasoning. In Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for

Computing Machinery, New York, NY, USA, 395–409.

[34] Natthapong Jungteerapanich. 2009. A Tableau System for the Modal 𝜇-Calculus. In TABLEAUX 2009. Springer Berlin Heidelberg, 220–234.

[35] Dexter Kozen. 1985. A probabilistic PDL. J. Comput. System Sci. 30, 2 (1985), 162–178.
[36] Ximeng Li, Qianying Zhang, Guohui Wang, Zhiping Shi, and Yong Guan. 2021. Reasoning About Iteration and Recursion Uniformly Based on

Big-Step Semantics. In SETTA 2021. Springer International Publishing, 61–80.
[37] José Meseguer. 2012. Twenty years of rewriting logic. The Journal of Logic and Algebraic Programming 81, 7 (2012), 721–781.

[38] R. Milner. 1982. A Calculus of Communicating Systems. Springer-Verlag, Berlin, Heidelberg.
[39] Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of Mobile Processes, I. Information and Computation 100, 1 (1992), 1–40.

[40] Brandon Moore, Lucas Peña, and Grigore Rosu. 2018. Program Verification by Coinduction. In ESOP 2018. Springer International Publishing,
589–618.

[41] Oleg Mürk, Daniel Larsson, and Reiner Hähnle. 2007. KeY-C: A tool for verification of C programs. In Automated Deduction – CADE-21. Springer
Berlin Heidelberg, Berlin, Heidelberg, 385–390.

[42] Peter W. O’Hearn. 2019. Incorrectness logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (2019), 32 pages.
[43] Raúl Pardo, Einar Broch Johnsen, and et al. 2022. A Specification Logic for Programs in the Probabilistic Guarded Command Language. In ICTAC

2022 (Tbilisi, Georgia). Springer-Verlag, 369–387.
[44] André Platzer. 2007. Differential Dynamic Logic for Verifying Parametric Hybrid Systems.. In TABLEAUX 2007 (2007-09-20). Springer Berlin

Heidelberg, 216–232.

[45] André Platzer. 2018. Logical Foundations of Cyber-Physical Systems. Springer.
[46] André Platzer and Jan-David Quesel. 2008. KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description). In Automated Reasoning.

Springer Berlin Heidelberg, Berlin, Heidelberg, 171–178.

[47] G. D. Plotkin. 1981. A Structural Approach to Operational Semantics. Technical Report DAIMI FN-19. University of Aarhus.

[48] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. 2010. Compiling Esterel. Springer New York, NY.

[49] Vaughan R. Pratt. 1976. Semantical Considerations on Floyd-Hoare Logic. In Annual IEEE Symposium on Foundations of Computer Science (FOCS).
IEEE Computer Society, 109–121.

[50] Wolfgang Reif. 1995. The Kiv-approach to software verification. Springer Berlin Heidelberg, Berlin, Heidelberg, 339–368.

[51] J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. In Proceedings 17th Annual IEEE Symposium on Logic in Computer
Science. 55–74.

[52] Grigore Roşu and Andrei Ştefănescu. 2012. Towards a Unified Theory of Operational and Axiomatic Semantics. In ICALP 2012. Springer Berlin
Heidelberg, 351–363.

[53] Grigore Rosu, Andrei Stefanescu, Stefan Ciobâcá, and Brandon M. Moore. 2013. One-Path Reachability Logic. In LICS 2013. 358–367.
[54] K. Rustan and M. Leino. 2007. Verification of Object-Oriented Software. The KeY Approach. Lecture Notes in Computer Science (LNCS), Vol. 4334.

Springer.

[55] Klaus Schneider and Jens Brandt. 2017. Quartz: A Synchronous Language for Model-Based Design of Reactive Embedded Systems. Springer Netherlands,
Dordrecht, 1–30.

Manuscript submitted to ACM

https://doi.org/10.1145/2103656.2103719
https://arxiv.org/abs/2405.19968
https://arxiv.org/abs/2405.19968

30 Y. Zhang

[56] Andrei Ştefănescu, Ştefan Ciobâcă, and et al. 2014. All-Path Reachability Logic. In RTA-TLCA 2014. Springer International Publishing, 425–440.
[57] Colin Stirling and David Walker. 1991. Local model checking in the modal mu-calculus. Theor. Comput. Sci. 89, 1 (1991), 161–177.
[58] Tsubasa Takagi, Canh Minh Do, and Kazuhiro Ogata. 2024. Automated Quantum Program Verification in Dynamic Quantum Logic. In Dynamic

Logic. New Trends and Applications. Springer Nature Switzerland, Cham, 68–84.

[59] Gadi Tellez and James Brotherston. 2020. Automatically Verifying Temporal Properties of Pointer Programs with Cyclic Proof. Journal of Automated
Reasoning 64, 3 (2020), 555–578.

[60] Samuel Teuber, Mattias Ulbrich, André Platzer, and Bernhard Beckert. 2025. Heterogeneous Dynamic Logic: Provability modulo program theories.

arXiv [cs.LO] (July 2025).

[61] Yuanrui Zhang. 2025. Parameterized Dynamic Logic – Towards A Cyclic Logical Framework for General Program Specification and Verification.

arXiv:2404.18098 [cs.LO] https://arxiv.org/abs/2404.18098

[62] Yuanrui Zhang, Frédéric Mallet, and Zhiming Liu. 2022. A dynamic logic for verification of synchronous models based on theorem proving. Front.
Comput. Sci. 16, 4 (2022), 3 pages.

[63] Yuanrui Zhang, Hengyang Wu, Yixiang Chen, and Frédéric Mallet. 2021. A clock-based dynamic logic for the verification of CCSL specifications in

synchronous systems. Science of Computer Programming 203 (2021), 102591.

[64] Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning.

Proc. ACM Program. Lang. 7, OOPSLA1, Article 93 (apr 2023), 29 pages.

A Other Propositions and Proofs

Lemma A.1. Given labeled formulas 𝜏1, ..., 𝜏𝑛, 𝜏 , for any label mapping𝔪 ∈ M with𝔪 |= Γ, if𝔪 |= 𝜏1 and ... and𝔪 |= 𝜏𝑛
implies 𝔪 |= 𝜏 , then rule

Γ ⇒ 𝜏1,Δ ... Γ ⇒ 𝜏𝑛,Δ

Γ ⇒ 𝜏,Δ

is sound for any contexts Γ,Δ.

Proof of Lemma A.1. Assume Γ ⇒ 𝜏1,Δ,...,Γ ⇒ 𝜏𝑛,Δ are valid, for any 𝔪 ∈ M with 𝔪 |= Γ, let K,𝔪 ̸ |= 𝜏 ′ for all
𝜏 ′ ∈ Δ, we need to prove 𝔪 |= 𝜏 . From the assumption we have 𝔪 |= 𝜏1, ..., 𝔪 |= 𝜏𝑛 . Then 𝔪 |= 𝜏 is an immediate

result. □

Lemma A.2. Given labeled formulas 𝜏1, ..., 𝜏𝑛, 𝜏 , for any label mapping 𝔪 ∈ M with K,𝔪 |= Γ, if 𝔪 |= 𝜏 implies either

𝔪 |= 𝜏1 or ... or 𝔪 |= 𝜏𝑛 , then rule
Γ, 𝜏1 ⇒ Δ ... Γ, 𝜏𝑛 ⇒ Δ

Γ, 𝜏 ⇒ Δ

is sound for any contexts Γ,Δ.

Proof of Lemma A.2. Assume Γ, 𝜏1 ⇒ Δ,...,Γ, 𝜏𝑛 ⇒ Δ are valid. For any 𝔪 ∈ M with 𝔪 |= Γ, if 𝔪 |= 𝜏 , by the

assumption, 𝔪 |= 𝜏𝑖 for some 1 ≤ 𝑖 ≤ 𝑛. By the validity of Γ, 𝜏𝑖 ⇒ Δ, 𝔪 |= Δ. By the arbitrariness of 𝔪 we know that

Γ, 𝜏 ⇒ Δ is valid. □

Content of Theorem 5.3: Each rule from 𝑃𝑟ldlp in Table 2 is sound.

Below we only prove the soundness of the rules ([𝛼]𝑅), ([𝛼]𝐿) and (Sub). Other rules can be proved similarly based

on the semantics of DL𝔭 formulas (Definition 4.6).

Proof of Theorem 5.3. For rule ([𝛼]𝑅), by Lemma A.1, it is sufficient to prove that for any 𝔪 ∈ M with 𝔪 |= Γ,

if 𝔪 |= 𝜎 ′ : [𝛼 ′]𝜙 for all (𝛼 ′, 𝜎 ′) ∈ Φ, then 𝔪 |= 𝜎 : [𝛼]𝜙 . For any relation 𝔪(𝜎)
𝛼/𝛼0−−−−→ 𝑤0 with some 𝛼0 ∈ P and

𝑤0 ∈ S, by Item 1 of Definition 5.1, there is a label 𝜎0 ∈ L such that 𝔪(𝜎0) =𝑤0 and |= (Γ ⇒ (𝛼, 𝜎) −→ (𝛼0, 𝜎0)). So
𝑃𝑟dlp ⊢ (Γ ⇒ (𝛼, 𝜎) −→ (𝛼0, 𝜎0)) (by Item 3 of Definition 5.1). Hence (𝛼0, 𝜎0) ∈ Φ, and by assumption,K,𝔪 |= 𝜎0 : [𝛼0]𝜙 .
By the arbitrariness of 𝛼0 and 𝜎0, we have 𝔪 |= 𝜎 : [𝛼]𝜙 according to the semantics of formula [𝛼]𝜙 (Definition 4.6).

Manuscript submitted to ACM

https://arxiv.org/abs/2404.18098
https://arxiv.org/abs/2404.18098

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 31

For rule ([𝛼]𝐿), by Lemma A.2, it is sufficient to prove that for any 𝔪 ∈ M with 𝔪 |= Γ, if 𝔪 |= 𝜎 : [𝛼]𝜙 , then 𝔪 |=
𝜎 ′ : [𝛼 ′]𝜙 . For any execution path 𝔪(𝜎 ′)

𝛼 ′/·
−−−→ ...

·/↓
−−→ 𝑤 of 𝛼 ′ for some𝑤 ∈ S, by the soundness of the side deduction

𝑃𝑟dlp ⊢ (Γ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′),Δ), 𝔪(𝜎)
𝛼/𝛼 ′
−−−→ 𝔪(𝜎 ′) is a relation on K , so 𝔪(𝜎)

𝛼/𝛼 ′
−−−→ 𝔪(𝜎 ′)

𝛼 ′/·
−−−→ ...

·/↓
−−→ 𝑤 is an

execution path of 𝛼 . By the semantics of the dynamic formulas (Definition 4.6), we obtain the result.

For rule (Sub), we need to prove that the validity of Γ ⇒ Δ implies the validity of Sub(Γ) ⇒ Sub(Δ). For any𝔪 ∈ M
satisfying𝔪 |= Sub(Γ), by Definition 4.12, there exists a𝔪′

such that for any formula 𝜎 : 𝜙 ∈ Γ∪Δ,𝔪′ (𝜎) = 𝔪(Sub(𝜎)).
So K,𝔪′ |= Γ. Since Γ ⇒ Δ is valid, K,𝔪′ |= 𝜎0 : 𝜙0 for some 𝜎0 : 𝜙0 ∈ Δ. By that 𝔪′ (𝜎0) = 𝔪(Sub(𝜎0)),
𝔪 |= Sub(𝜎0) : 𝜙0 with Sub(𝜎0) : 𝜙0 ∈ Sub(Δ). By the arbitrariness of 𝔪, Sub(Γ) ⇒ Sub(Δ) is valid.

□

Content of Proposition 7.5: ⪯𝑚 is a partial-order relation.

Before proving Proposition 7.5, we firstly review the notion of partial-order relation.

A relation ⪯ on a set 𝑆 is partially ordered, if it satisfies the following properties: (1) Reflexivity. 𝑡 ⪯ 𝑡 for each 𝑡 ∈ 𝑆 . (2)
Anti-symmetry. For any 𝑡1, 𝑡2 ∈ 𝑆 , if 𝑡1 ⪯ 𝑡2 and 𝑡2 ⪯ 𝑡1, then 𝑡1 and 𝑡2 are the same element in 𝑆 , we denote by 𝑡1 = 𝑡2.

(3) Transitivity. For any 𝑡1, 𝑡2, 𝑡3 ∈ 𝑆 , if 𝑡1 ⪯ 𝑡2 and 𝑡2 ⪯ 𝑡3, then 𝑡1 ⪯ 𝑡3. 𝑡1 ≺ 𝑡2 is defined as 𝑡1 ⪯ 𝑡2 and 𝑡1 ≠ 𝑡2.
Recall that we use ⪯𝑠 to represent the suffix relation between execution paths. ⪯𝑠 is obviously a partial-order relation.

Proof of Proposition 7.5. The reflexivity is trivial. The transitivity can be proved by the definition of ‘replacements’

as described in Definition 7.4 and the transitivity of relation ≺𝑠 . Below we only prove the anti-symmetry.

For any finite sets 𝐷1, 𝐷2 of finite paths, if 𝐷1 ⪯𝑚 𝐷2 but 𝐷1 ≠ 𝐷2, let 𝑓𝐷1,𝐷2
: 𝐷1 → 𝐷2 be the function defined such

that for any 𝑡𝑟 ∈ 𝐷1, either (1) 𝑓𝐷1,𝐷2
(𝑡𝑟) ≈𝑠 𝑡𝑟 ; or (2) 𝑡𝑟 is one of the replacements of a replaced element 𝑓𝐷1,𝐷2

(𝑡𝑟) in
𝐷2 with 𝑡𝑟 ≺𝑠 𝑓𝐷1,𝐷2

(𝑡𝑟).
For the anti-symmetry, suppose C1 ⪯𝑚 C2 and C2 ⪯𝑚 C1 but C1 ≠ C2. Let 𝑡𝑟 ∈ C1 but 𝑡𝑟 ∉ C2. Then from C1 ⪯𝑚 C2, we

have 𝑡𝑟 ≺𝑠 𝑓C1,C2 (𝑡𝑟). If 𝑓C1,C2 (𝑡𝑟) ∈ C1, then we must have 𝑓C1,C2 (𝑡𝑟) ≺𝑚 𝑓C1,C2 (𝑓C1,C2 (𝑡𝑟)) because 𝑓C1,C2 (𝑡𝑟) is already
a replaced element in C2. If 𝑓C1,C2 (𝑡𝑟) ∉ C1, then by C2 ⪯𝑚 C1, we have 𝑓C1,C2 (𝑡𝑟) ≺𝑠 𝑓C2,C1 (𝑓C1,C2 (𝑡𝑟)). Continuing this

process by considering 𝑓C1,C2 (𝑓C1,C2 (𝑡𝑟)) or 𝑓C2,C1 (𝑓C1,C2 (𝑡𝑟)) and further elements, we in fact can construct an infinite

descent sequence like 𝑡𝑟 ≺𝑠 𝑓C1,C2 (𝑡𝑟) ≺𝑠 𝑓C1,C2 (𝑓C1,C2 (𝑡𝑟)) ≺𝑠 ... w.r.t. relation ⪯𝑠 , which violates its well-foundedness.

So the only possibility is C1 = C2.

□

Content of Lemma 7.9: In a cyclic proof (where there is at least one derivation path), let (𝜎 : 𝜙, 𝜎 ′ : 𝜙 ′) be a

step of a derivation trace over a derivation (𝜈, 𝜈 ′) of an invalid derivation path, where 𝜙, 𝜙 ′ ∈ 𝔉𝑑𝑙𝑝 . For any set

EX(𝔪(𝜎), 𝜙) of 𝜎 : 𝜙 w.r.t. a counter-example mapping 𝔪 of 𝜈 , there exists a counter-example mapping 𝔪′
of 𝜈 ′ and

a set EX(𝔪′ (𝜎 ′), 𝜙 ′) of 𝜎 ′ : 𝜙 ′
such that EX(𝔪′ (𝜎 ′), 𝜙 ′) ⪯𝑚 EX(𝔪(𝜎), 𝜙). Moreover, if (𝜎 : 𝜙, 𝜎 ′ : 𝜙 ′) is a progressive

step, then EX(𝔪′ (𝜎 ′), 𝜙 ′) ≺𝑚 EX(𝔪(𝜎), 𝜙).

Proof of Lemma 7.9. Consider the rule application from node 𝜈 , we only consider the cases when it is an instance of

rule ([𝛼]𝑅), rule ([𝛼]𝐿), rule (Sub), and rule (∧𝑅), and when the first element of the CP pair we consider is their target

formula.

Case for rule ([𝛼]𝑅): If from node 𝜈 rule ([𝛼]𝑅) is applied with 𝜏 =𝑑𝑓 𝜎 : [𝛼]𝜙 the target formula, let 𝜏 ′ = (𝜎 ′ : [𝛼 ′]𝜙)
for some 𝛼 ′ and 𝜎 ′, so 𝜈 = (Γ ⇒ 𝜏,Δ) and 𝜈 ′ = (Γ ⇒ 𝜏 ′,Δ). (In this case, (𝜈, 𝜈 ′) is already a progressive step.) Since 𝔪

is a counter-example of 𝜈 , 𝔪 ̸ |= 𝜏 , so mex(𝔪(𝜎), 𝛼) ≠ ∅. Thus EX(𝔪(𝜎), [𝛼]𝜙) ≠ ∅. By the soundness of rule ([𝛼]𝑅)
and the assumption that 𝑃𝑟dlp ⊢ Γ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′),Δ, for each path 𝑡𝑟 = 𝔪(𝜎 ′)𝑠1 ...𝑠𝑛 ∈ EX(𝔪(𝜎 ′), [𝛼 ′]𝜙) (𝑛 ≥ 0),

Manuscript submitted to ACM

32 Y. Zhang

path𝔪(𝜎)𝑡𝑟 ∈ EX(𝔪(𝜎), [𝛼]𝜙) has 𝑡𝑟 as its proper suffix. By Definition 7.2, EX(𝔪(𝜎), [𝛼]𝜙) and EX(𝔪(𝜎 ′), [𝛼 ′]𝜙) are
also finite. Therefore EX(𝔪(𝜎 ′), [𝛼 ′]𝜙) ≺𝑚 EX(𝔪(𝜎), [𝛼]𝜙).
Case for rule ([𝛼]𝐿): If from node 𝜈 rule ([𝛼]𝐿) is applied with 𝜏 =𝑑𝑓 𝜎 : [𝛼]𝜙 the target formula, let 𝜏 ′ = (𝜎 ′ :
[𝛼 ′]𝜙) for some 𝛼 ′ and 𝜎 ′, so 𝜈 = (Γ ⇒ 𝜏,Δ) and 𝜈 ′ = (Γ ⇒ 𝜏 ′,Δ). By the soundness of rule ([𝛼]𝐿) and the

assumption that 𝑃𝑟dlp ⊢ Γ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′),Δ, for each path 𝑡𝑟 = 𝔪(𝜎 ′)𝑠1 ...𝑠𝑛 ∈ EX(𝔪(𝜎 ′), [𝛼 ′]𝜙) (𝑛 ≥ 0),

path 𝔪(𝜎)𝑡𝑟 ∈ EX(𝔪(𝜎), [𝛼]𝜙) has 𝑡𝑟 as its proper suffix. By Definition 7.2, EX(𝔪(𝜎), [𝛼]𝜙) and EX(𝔪(𝜎 ′), [𝛼 ′]𝜙)
are also finite. Therefore EX(𝔪(𝜎 ′), [𝛼 ′]𝜙) ⪯𝑚 EX(𝔪(𝜎), [𝛼]𝜙), where the equivalence relation = holds only when

EX(𝔪(𝜎), [𝛼]𝜙) = ∅. When (𝜏, 𝜏 ′) is progressive, which means that we also have the derivation 𝑃𝑟dlp ⊢ (Γ ⇒ 𝛼 ⇓ 𝜎,Δ),
then mex(𝔪(𝜎), 𝛼) ≠ ∅. This means that EX(𝔪(𝜎), [𝛼]𝜙) ≠ ∅. Therefore EX(𝔪(𝜎 ′), [𝛼 ′]𝜙) ≺𝑚 EX(𝔪(𝜎), [𝛼]𝜙).
Case for rule (Sub): If from node 𝜈 a substitution rule (Sub) is applied, let 𝜏 = Sub(𝜎) : 𝜙 be the target formula of

𝜈 , then 𝜏 ′ = 𝜎 : 𝜙 . By Definition 4.12, for the label mapping 𝔪, there exists a 𝔪′
such that 𝔪′ (𝜎) = 𝔪(Sub(𝜎)). So

EX(𝔪(Sub(𝜎)), 𝜙) = EX(𝔪′ (𝜎), 𝜙).
Case for rule (∧𝑅): If from node 𝜈 rule (∧𝑅) is applied, let 𝜏 = 𝜎 : 𝜙 ∧𝜓 be the target formula of 𝜈 , and 𝜏 ′ = 𝜎 : 𝜙 .

By the definition of EX (Definition 7.8), we have EX(𝔪(𝜎), 𝜙) ⊆ EX(𝔪(𝜎), 𝜎 : 𝜙 ∧𝜓), so EX(𝔪(𝜎), 𝜙) ⪯𝑚 EX(𝔪(𝜎), 𝜎 :

𝜙 ∧𝜓). □

From the case of rule ([𝛼]𝐿) in the above proof, we see that derivation 𝑃𝑟dlp ⊢ (Γ ⇒ 𝛼 ⇓ 𝜎,Δ)) imposes EX(𝑚(𝜎), [𝛼]𝜙) ≠
∅, which is the key to prove the strict relation ≺𝑚 between EX(𝔪(𝜎 ′), [𝛼 ′]𝜙) and EX(𝔪(𝜎), [𝛼]𝜙).
Content of Proposition 5.10: Given a sound rule of the form

Γ1 ⇒ Δ1 ... Γ𝑛 ⇒ Δ𝑛

Γ ⇒ Δ , 𝑛 ≥ 1,

in which all formulas are unlabeled, then the rule

𝜎 : Γ1 ⇒ 𝜎 : Δ1 ... 𝜎 : Γ𝑛 ⇒ 𝜎 : Δ𝑛

𝜎 : Γ ⇒ 𝜎 : Δ

is sound for any label 𝜎 ∈ free(L, Γ ∪ Δ ∪ Γ1 ∪ Δ1 ∪ ... ∪ Γ𝑛 ∪ Δ𝑛).

Proof of Proposition 5.10. Let 𝐴 = Γ ∪ Δ ∪ Γ1 ∪ Δ1 ∪ ... ∪ Γ𝑛 ∪ Δ𝑛 . Assume sequents 𝜎 : Γ𝑖 ⇒ 𝜎 : Δ𝑖 (1 ≤ 𝑖 ≤ 𝑛)
are valid, we need to prove that sequent 𝜎 : Γ ⇒ 𝜎 : Δ is valid. First, notice that each sequent Γ𝑖 ⇒ Δ𝑖 (1 ≤ 𝑖 ≤ 𝑛) is
valid. Because since 𝜎 ∈ free(L, 𝐴), for any 𝑠 ∈ S such that 𝑠 |= Γ𝑖 , there is a label mapping denoted by 𝔪𝑠 ∈ M with

𝑠 =𝐴 𝔪𝑠 (𝜎) such that 𝔪𝑠 (𝜎) |= Γ𝑖 (Definition 5.6), so 𝔪𝑠 |= 𝜎 : Γ𝑖 (By Definition 4.13). By the validity of the sequent

𝜎 : Γ𝑖 ⇒ 𝜎 : Δ𝑖 , 𝔪𝑠 |= 𝜎 : 𝜙 for some 𝜙 ∈ Δ𝑖 , which means 𝔪𝑠 (𝜎) |= 𝜙 . Hence 𝑠 |= 𝜙 . From the validity of Γ𝑖 ⇒ Δ𝑖 , we

get that Γ ⇒ Δ is valid. For any 𝔪 ∈ M, if 𝔪 |= 𝜎 : Γ, then 𝔪(𝜎) |= Γ (Definition 4.13). By the validity of Γ ⇒ Δ, we

have 𝔪(𝜎) |= 𝜙 for some 𝜙 ∈ Δ. But this just means 𝔪 |= 𝜎 : 𝜙 . Therefore, we have concluded that 𝜎 : Γ ⇒ 𝜎 : Δ is

valid.

□

Content of Lemma 7.16: Under the same conditions as in Theorem 7.15, for any valid sequent of the form: Γ ⇒ 𝜎 :

[⟨𝛼⟩]𝜙 , 𝑃𝑟dlp ⊢ (Γ ⇒ 𝜎 : [⟨𝛼⟩]𝜙).

Proof of Lemma 7.16. Let 𝜈 =𝑑𝑓 (Γ ⇒ 𝜎 : [⟨𝛼⟩]𝜙). We proceed by simultaneous induction on the number𝑀𝜈 of the

modalities [·] or ⟨·⟩ in 𝜈 and the maximum number 𝑁𝛼 of the different programs along the program sequences starting

from 𝛼 for all labels and contexts (see Definition 7.13).

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 33

Base case.𝑀𝜈 = 𝑁𝛼 = 1, so in the sequent 𝜈 there is only one modality, which is [⟨𝛼⟩], and program 𝛼 is either ↓ or a
loop program ≠↓ that can only perform transitions of the form: (𝛼, 𝜎) −→ (𝛼, 𝜎 ′) for some 𝛼 ′ under some context. The

case for 𝛼 =↓ is trivial, as by applying rule ([↓]) or rule (⟨↓⟩) and rule (Ter), we can directly obtain the result. For the

case when 𝛼 ≠↓ is a loop program, the proof is just a special case to the proof for the step case as follows.

Step case. This case is divided into two parts. Part I describes the process of constructing the derivation of sequent 𝜈

(named “Proc” below); Part II further proves that this derivation is cyclic.

Part I : Without loss of generality, suppose 𝛼 is a loop program. For the label 𝜎 ∈ L and the context Γ, by Definition 7.14,

there exist a label 𝜎 ′, a context Γ′ and a substitution 𝜂 satisfying that

(a) 𝜎 = 𝜂 (𝜎 ′) and Γ = 𝜂 (Γ′);
(b) |= (Γ ⇒ 𝜎 ⇓ 𝛼) implies |= (Γ′ ⇒ 𝜎 ′ ⇓ 𝛼);
(c) for each 𝛼-loop sequence: Γ′ : (𝛼, 𝜎 ′, Γ1)...(𝛼, 𝜎 ′′, Γ𝑛) (𝑛 ≥ 1), there exist a context Γ′′ and a substitution 𝜉 such that

Γ′′ = 𝜉 (Γ′), 𝜎 ′′ = 𝜉 (𝜎 ′) and |= (Γ𝑛 ⇒ Γ′′).

From Γ ⇒ 𝜎 : [⟨𝛼⟩]𝜙 , we can have the following derivation named “Proc”:

...

(Ind. Hypo.)
8 : Γ𝑛 ⇒ Γ′′

7 : Γ′ ⇒ 𝜎 ′ : [⟨𝛼⟩]𝜙
6 : Γ′′ ⇒ 𝜎 ′′ : [⟨𝛼⟩]𝜙

(Sub)

Γ𝑛, Γ
′′ ⇒ 𝜎 ′′ : [⟨𝛼⟩]𝜙

(WkR)

4 : Γ𝑛 ⇒ 𝜎 ′′ : [⟨𝛼⟩]𝜙
(Cut)

... ([⟨𝛼 ⟩]𝑅)
.
.
.
....

3 : Γ1 ⇒ 𝜎 ′ : [⟨𝛼⟩]𝜙
([⟨𝛼 ⟩]𝑅)

...

(Ind. Hypo.)
10 : Λ ⇒ 𝜍 ′ : [⟨𝛽 ′⟩]𝜙
9 : Λ ⇒ 𝜍 : [⟨𝛽⟩]𝜙

([⟨𝛼 ⟩]𝑅)

...
.
.
.
.... ...

...
.
.
.
....

2 : Γ′ ⇒ 𝜎 ′ : [⟨𝛼⟩𝜙]
1 : Γ ⇒ 𝜎 : [⟨𝛼⟩]𝜙

(Sub)

The derivation from node 1 to 2 is according to (a). From node 2, the context Γ′ is strengthened for the derivation

of each 𝛼 sequence starting from (𝛼, 𝜎 ′). This process can be realized by applying rule (Cut) and the other rules for

labeled propositional logical formulas as shown in Table 2. Each 𝛼-loop sequence: Γ′ : (𝛼, 𝜎 ′, Γ1) ...(𝛼, 𝜎 ′′, Γ𝑛) (𝑛 ≥ 1)

corresponds to a derivation, named “Sub-proc 1”, like the one from node 3 as shown in Proc. From node 3 to 4 includes a

series of derivation steps that symbolically executes the 𝛼-loop sequence by applying the rule ([𝛼]𝑅) or (⟨𝛼⟩𝑅) (denoted
by ([⟨𝛼⟩]𝑅)) and also the other rules for strengthening the contexts Γ2, ..., Γ𝑛 . The (c) above provides the evidence for

both the derivation from node 6 to 7, and the validation of node 8. The derivation from node 2 to 10 is a general case

of an 𝛼 sequence: Γ′ : (𝛼, 𝜎 ′, ·)...(𝛽, 𝜍,Λ) (𝛽 ′, 𝜍 ′,Λ), where from (𝛽 ′, 𝜍 ′) under Λ program 𝛼 can never be reached. We

name the derivation like the one from node 10 here as “Sub-proc 2”.

Part II : Now we show that the derivation Proc is actually a cyclic proof. We firstly show that the whole proof Proc is a

preproof (i.e. a finite tree structure with buds), which is based on the following 3 proof statements.

(1) The derivation part as shown above in Proc is finite. On one hand, by the finiteness of set 𝑃𝑟dlp, each derivation step

must have finite premises; On the other hand, by Lemma 7.17, from node 1 there is a finite number of 𝛼 sequences

(by selecting a set of contexts for each core 𝛼 sequence). This means that the number of the branches Sub-proc 1 is

finite.

Manuscript submitted to ACM

34 Y. Zhang

(2) Each Sub-proc 1 is a preproof branch. On one hand, By that 𝜉 (Γ′) = Γ′′ (see (c) above), the number of modalities

in Γ′′ is the same as that in Γ′. On the other hand, by Item 4 of Definition 5.1, when we strengthen the context Γ′

during the derivation from node 3 to 4, we can make sure that compared to Γ′ there is no more dynamic formulas

added in Γ1, ..., Γ𝑛 . Therefore, the number of modalities in the sequent Γ𝑛 ⇒ Γ′′ equals to that in sequent 𝜈 , and is

thus strictly less than𝑀𝜈 . So, by induction hypothesis, 𝑃𝑟dlp ⊢ (Γ𝑛 ⇒ Γ′′).
(3) Each Sub-proc 2 is a cyclic proof branch. For any derivation step like the one from node 9 to 10, since from (𝛽 ′, 𝜍 ′)

under Λ the program 𝛼 can never be reached, clearly we have 𝑁𝛽′ < 𝑁𝛼 , because except 𝛼 itself, any program

that 𝛽 ′ can reach can be reached by 𝛼 (through the 𝛼 sequence: Γ′ : (𝛼, 𝜎 ′, ·) ...(𝛽, 𝜍,Λ) (𝛽 ′, 𝜍 ′,Λ)). So by induction

hypothesis, 𝑃𝑟dlp ⊢ (Λ ⇒ 𝜍 ′ : [⟨𝛽 ′⟩]𝜙).

It remains to show that in Proc along every derivation path, there exists a progressive derivation trace. Observing

that in Proc, every derivation path must at least pass through a preproof branch Sub-proc 1 for infinite times. So, it is

enough to show that each Sub-proc 1 has a progressive derivation trace. In a Sub-proc 1, consider two cases:

(i) If the modality is [𝛼], by Definition 5.5, in every inference of rule ([𝛼]𝑅), the CP pair on the right of both sequents

is a progressive step.

(ii) If the modality is ⟨𝛼⟩, since |= (Γ ⇒ 𝜎 : ⟨𝛼⟩𝜙), |= (Γ ⇒ 𝜎 ⇓ 𝛼). By (b) above, |= (Γ′ ⇒ 𝜎 ′ ⇓ 𝛼). By the

completeness w.r.t.𝔉ter (Item 3 of Definition 5.1), 𝑃𝑟dlp ⊢ (Γ′ ⇒ 𝜎 ′ : ⟨𝛼⟩𝜙). So according to Definition 7.2, in the

first inference of rule (⟨𝛼⟩𝑅), the CP pair on the right of both sequents is a progressive step.

In both cases above, the progressive derivation trace is: 𝜎 ′ : [⟨𝛼⟩]𝜙 in node 3, ..., 𝜎 ′′ : [⟨𝛼⟩]𝜙 in node 4, 𝜎 ′′ : [⟨𝛼⟩]𝜙 ,
𝜎 ′′ : [⟨𝛼⟩]𝜙 in node 6, 𝜎 ′ : [⟨𝛼⟩]𝜙 in node 7, ... as shown in Proc.

□

B A Cyclic Deduction of An Esterel Program

Esterel [12] is a synchronous programming language for reactive systems. Below we first introduce the semantics of an

Esterel program, then we explain why it needs extra program transformations in traditional verification frameworks.

Lastly, we explain how to express Esterel programs in DL𝔭 and give a cyclic deduction of this program.

Note that the introduction we provide below is informal and does not cover all aspects of the semantics of Esterel. But

it is enough to clear our point.

B.1 An Esterel Program in DL𝔭

We consider a synchronous program 𝐸 of an instantiation P𝐸 of programs written in Esterel language [12]:

𝐸 =𝑑𝑓 {trap 𝐴 ∥ 𝐵 end },

where

𝐴 =𝑑𝑓 {loop (emit 𝑆 (0) ; 𝑥 := 𝑥 − 𝑆 ; if 𝑥 = 0 then exit end ; pause) end }

𝐵 =𝑑𝑓 {loop (emit 𝑆 (1) ; pause) end }.
The behaviour of a synchronous program is characterized by a sequence of instances. At each instance, several (atomic)

executions of a program may occur. The value of each variable is unique in an instance. When several programs run

in parallel, their executions at one instance are thought to occur simultaneously. In this manner, the behaviour of a

parallel synchronous program is deterministic.

In this example, the behaviour of the program 𝐸 is illustrated as follows:

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 35

World𝑤 𝑤 (𝑥) 𝑤 (𝑆) 𝑛th Instance

𝑤1 3 1 1

𝑤2 2 1 2

𝑤3 1 1 3

𝑤4 0 1 4

Table 6. Transitional Behaviours of Program 𝐸 Starting From 𝑤1

• 𝑥 , 𝑆 are two variables. 𝑥 is a local variable with Z as its domain, 𝑆 is a “signal” whose domain is Z ∪ {⊥}, with ⊥
indicating the absense of a signal.

• The key word pause marks the end of an instance, when all signals are set to ⊥, representing the state “absence”.

• Signal emission emit 𝑆 (𝑒) means assigning the value of an expression 𝑒 to a signal 𝑆 and broadcasts the value.

𝑥 := 𝑥 − 𝑆 is the usual assignment as in FODL.

• At each instance, program 𝐴 firstly emits signal 𝑆 with value 0 and subtracts 𝑥 with the current value of 𝑆 ; then

checks if 𝑥 = 0. While program 𝐵 emits signal 𝑆 with value 1. The value of signal 𝑆 in one instance should be the

sum of all of its emitted values by different current programs. So the value of 𝑆 should be 1 + 0 = 1.

• The whole program 𝐸 continues executing until condition 𝑥 = 0 is satisfied, when exit terminates the whole

program by jumping out of the trap statement.

Starting from an initial world𝑤1 with𝑤1 (𝑥) = 3 and𝑤1 (𝑆) = 1, we have an execution path𝑤1𝑤2𝑤3𝑤4 of program 𝐸

explained in Table 6, where we omit the intermediate forms of programs during the execution.

B.2 Prior Program Transformations in Esterel Programs

In Esterel, the behaviour of a parallel program is usually not true interleaving. There exist data dependencies between

its processes. For instance, in the program 𝐸 above, the assignment 𝑥 := 𝑥 − 𝑆 can only be executed after all values of 𝑆

in both programs 𝐴 and 𝐵 are collected. In other words, 𝑥 := 𝑥 − 𝑆 can only be executed after emit 𝑆 (0) and emit 𝑆 (1).
For a synchronous program like this, additional program transformations are mandatory (cf. [24]). We need to first

transform the program 𝐸, for example, into a sequential one as:

𝐸′ = {trap 𝐶 end},

where

𝐶 =𝑑𝑓 {loop emit 𝑆 (0) ; emit 𝑆 (1) ; 𝑥 := 𝑥 − 𝑆 ; if 𝑥 = 0 then exit end ; pause) end}.

In 𝐶 , we collect all micro steps happen in an instance from both 𝐴 and 𝐵, in a correct order. In [24], 𝐸′ is called an

STA program. Note that such a prior transformation can be very heavy, since one can imagine that the behaviour of a

parallel Esterel program can be very complex (e.g. [10]).

Manuscript submitted to ACM

36 Y. Zhang

B.3 Instantiation of DL𝔭 in Esterel Programs

The instantiation process is similar to while programs. Let P𝐸 be the set of Esterel programs and Var𝐸 be the set of local

variables and signals in Esterel. We assume a PLK structure K𝐸 = (S𝐸 ,−→,I𝐸) for P𝐸 , where each world𝑤 ∈ S𝐸 is a

mapping𝑤 : Var𝐸 → (Z ∪ {⊥}) that maps each local variable to an integer and maps each signal to a value of Z ∪ {⊥}.
A program configuration 𝜎 ∈ L𝐸 in P𝐸 , as a label, is defined to capture the meaning of the structure

{𝑥1 ↦→ 𝑒1 | ... | 𝑥𝑛 ↦→ 𝑒𝑛} (𝑛 ≥ 1),

where the only difference from that of a while program is that it is a stack (with 𝑥𝑛 ↦→ 𝑒𝑛 the top element), allowing

several local variables with the same name. For example, configuration {𝑥 ↦→ 5 |𝑦 ↦→ 1 |𝑦 ↦→ 2} has two different local

variables 𝑦, storing the values 1 and 2 respectively.

Given a world 𝑤 ∈ S𝐸 , a label mapping 𝔪𝑤 ∈ M𝐸 (w.r.t. 𝑤) is defined such that for any configuration 𝜎 ∈ L𝐸 of the

form: {𝑥1 ↦→ 𝑒1 | ... | 𝑥𝑛 ↦→ 𝑒𝑛}, 𝔪𝑤 (𝜎) is a world satisfying that

(1) 𝔪𝑤 (𝜎) (𝑥𝑖) =𝑤 (𝑒 𝑗) with 𝑛 ≥ 𝑗 ≥ 𝑖 ≥ 1 and 𝑗 the largest index for 𝑥𝑖 ↦→ 𝑒 𝑗 in 𝜎 (i.e. the right-most value of variable

𝑥𝑖);

(2) 𝔪𝑤 (𝜎) (𝑦) =𝑤 (𝑦) for other variable 𝑦 ∈ Var𝐸 ,

where 𝑤 (𝑒) for an expression 𝑒 is defined similarly as in while programs (see Example 4.10). For example, we have

𝔪𝑤 ({𝑥 ↦→ 5 |𝑦 ↦→ 1 |𝑦 ↦→ 2})(𝑦) =𝑤 (2) = 2 for any 𝔪𝑤 .

We omit the details of the set (Prop)𝐸 of rules for the operational semantics of Esterel programs, as they are too complex

(cf. [48]).

B.4 A Cyclic Deduction of Program 𝐸

In DL𝔭, program 𝐸 can be directly reasoned about without additional program transformations. This is achieved because

DL𝔭 supports a cyclic reasoning directly based on the operational semantics. During the following derivation, we see

that the outside loop structure of 𝐸 (which is 𝐶 above after the transformations) is actually reflected by the cyclic

derivation tree itself.

We prove the property

𝜈2 =𝑑𝑓 𝜎1 : 𝑥 > 0 ⇒ 𝜎1 : ⟨𝐸⟩true,

which says that under configuration 𝜎1 = {𝑥 ↦→ 𝑣, 𝑆 ↦→ ⊥}, with 𝑣 a fresh variable representing an initial value of 𝑥 , if

𝑥 > 0, then 𝐸 can finally terminate.

The derivations of 𝜈2 is depicted in Table 7. The symbolic executions of program 𝐸 rely on rule

Γ ⇒ 𝜎 ′ : ⟨𝛼 ′⟩𝜙,Δ
Γ ⇒ 𝜎 : ⟨𝛼⟩𝜙,Δ

(⟨𝛼 ⟩) , if 𝑃𝑟dlp ⊢ (Γ ⇒ (𝛼, 𝜎) −→ (𝛼 ′, 𝜎 ′),Δ),

which can be derived by rules ([𝛼]𝐿), (¬𝑅) and (¬𝐿) from Table 2. We omit all the side deductions of the program

transitions and terminations in the instances of rule (⟨𝛼⟩).
From node 2 to 3 is a progressive step, where to see that program 𝜎2 ⇓ trap ((𝑥 := 𝑥 − 𝑆 ;𝐴′) ; 𝐴) ∥ 𝐵 end terminates,

informally, we observe that the value of variable 𝑥 decreases by 1 (by executing 𝑥 := 𝑥 −𝑆) in each loop so that statement

exit is finally reached. From node 13 to 14 and node 15 to 16, rule

Γ, 𝜙 ′ ⇒ Δ

Γ, 𝜙 ⇒ Δ
(LE)

,
if 𝜙 → 𝜙 ′ ∈ F is valid

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 37

17

(Ter)

5

(Wk𝑅)

16

15

(LE)

14

(Sub)

13

(LE)

12

(⟨𝛼 ⟩)

7

(⟨𝛼 ⟩)

10

(Ter)

9

(⟨↓⟩)

8

(⟨𝛼 ⟩)

6

(𝜎∨𝐿)

4

(𝜎Cut)

3

(⟨𝛼 ⟩)

2

(⟨𝛼 ⟩)

𝜈2 : 1
(⟨𝛼 ⟩)

Definitions of other symbols:

𝐴 =𝑑𝑓 loop (emit 𝑆 (0) ; 𝑥 := 𝑥 − 𝑆 ; if 𝑥 = 0 then exit end ; pause) end
𝐵 =𝑑𝑓 loop (emit 𝑆 (1) ; pause) end
𝐴′ =𝑑𝑓 (if 𝑥 = 0 then exit end ; pause)
𝜎1 =𝑑𝑓 {𝑥 ↦→ 𝑣 | 𝑆 ↦→ ⊥}
𝜎2 =𝑑𝑓 {𝑥 ↦→ 𝑣 | 𝑆 ↦→ 0}
𝜎3 =𝑑𝑓 {𝑥 ↦→ 𝑣 | 𝑆 ↦→ 1}
𝜎4 =𝑑𝑓 {𝑥 ↦→ 𝑣 − 1 | 𝑆 ↦→ 1}
𝜎5 =𝑑𝑓 {𝑥 ↦→ 𝑣 − 1 | 𝑆 ↦→ ⊥}

1: 𝜎1 : 𝑥 > 0 ⇒ 𝜎1 : ⟨trap 𝐴 ∥ 𝐵 end⟩true
2: 𝜎1 : 𝑥 > 0 ⇒ 𝜎2 : ⟨trap ((𝑥 := 𝑥 − 𝑆 ;𝐴′) ; 𝐴) ∥ 𝐵) end⟩true
3: 𝜎1 : 𝑥 > 0 ⇒ 𝜎3 : ⟨trap ((𝑥 := 𝑥 − 𝑆 ;𝐴′) ; 𝐴) ∥ (pause ; 𝐵) end⟩true
4: 𝜎1 : 𝑥 > 0 ⇒ 𝜎4 : ⟨trap (𝐴′

; 𝐴) ∥ (pause ; 𝐵) end⟩true
5: 𝜎1 : 𝑥 > 0 ⇒ 𝜎4 : ⟨trap (𝐴′

; 𝐴) ∥ (pause ; 𝐵) end⟩true, 𝜎1 : (𝑥 − 1 ≠ 0 ∨ 𝑥 − 1 = 0)
17: 𝜎1 : 𝑥 > 0 ⇒ 𝜎1 : (𝑥 − 1 ≠ 0 ∨ 𝑥 − 1 = 0)
6: 𝜎1 : 𝑥 > 0, 𝜎1 : (𝑥 − 1 ≠ 0 ∨ 𝑥 − 1 = 0) ⇒ 𝜎4 : ⟨trap (𝐴′

; 𝐴) ∥ (pause ; 𝐵) end⟩true
7: 𝜎1 : 𝑥 > 0, 𝜎1 : 𝑥 − 1 ≠ 0 ⇒ 𝜎4 : ⟨trap (𝐴′

; 𝐴) ∥ (pause ; 𝐵) end⟩true
12: 𝜎1 : 𝑥 > 0, 𝜎1 : 𝑥 − 1 ≠ 0 ⇒ 𝜎4 : ⟨trap (pause ; 𝐴) ∥ (pause ; 𝐵) end⟩true
13: 𝜎1 : 𝑥 > 0, 𝜎1 : 𝑥 − 1 ≠ 0 ⇒ 𝜎5 : ⟨trap 𝐴 ∥ 𝐵 end⟩true
14: 𝜎5 : 𝑥 + 1 > 0, 𝜎5 : 𝑥 ≠ 0 ⇒ 𝜎5 : ⟨trap 𝐴 ∥ 𝐵 end⟩true
15: 𝜎1 : 𝑥 + 1 > 0, 𝜎1 : 𝑥 ≠ 0 ⇒ 𝜎1 : ⟨trap 𝐴 ∥ 𝐵 end⟩true
16: 𝜎1 : 𝑥 > 0 ⇒ 𝜎1 : ⟨trap 𝐴 ∥ 𝐵 end⟩true
8: 𝜎1 : 𝑥 > 0, 𝜎1 : 𝑥 − 1 = 0 ⇒ 𝜎4 : ⟨trap (𝐴′

; 𝐴) ∥ (pause ; 𝐵) end⟩true
9: 𝜎1 : 𝑥 > 0, 𝜎1 : 𝑥 − 1 = 0 ⇒ 𝜎5 : ⟨↓⟩true
10: 𝜎1 : 𝑥 > 0, 𝜎1 : 𝑥 − 1 = 0 ⇒ 𝜎5 : true

Table 7. Derivations of Property 𝜈2

is applied, which can be derived by the following derivations:

Γ, 𝜙 ′ ⇒ Δ

Γ, 𝜙, 𝜙 ′ ⇒ Δ
(Wk𝐿)

Γ, 𝜙 ⇒ 𝜙 ′,Δ
(Ter)

Γ, 𝜙 ⇒ Δ
(Cut)

From node 14 to 15, rule (Sub)
Γ ⇒ Δ

Γ [𝑒/𝑥] ⇒ Δ[𝑒/𝑥]
(Sub)

is applied, with (·) [𝑒/𝑥] an instantiation of the substitution Sub of labels (Definition 4.12). It is defined just as that in

the example of Section 6.1. Observe that sequent 14 can be written as:

𝜎1 [𝑣 − 1/𝑣] : 𝑥 + 1 > 0, 𝜎1 [𝑣 − 1/𝑣] : 𝑥 ≠ 0 ⇒ 𝜎1 [𝑣 − 1/𝑣] : ⟨trap 𝐴 ∥ 𝐵 end⟩true.

Sequent 16 is a bud that back-links to sequent 1. Thewhole preproof is cyclic as the only derivation path: 1, 2, 3, 4, 6, 7, 12, 13, 14, 15, 16, 1, ...

has a progressive trace whose elements are underlined in Table 7.

Manuscript submitted to ACM

38 Y. Zhang

C An Encoding of Separation Logic in DL𝔭

We instantiate DL𝔭 to express separation logic [51] — an extension of Hoare logic for reasoning about shared mutable

program data structures. The instantiated theory is called DL𝔭-SP. Below we only deal with a part of separation logic,

but it is enough to clear our point.

Separation Logic. In the following, we assume the readers are familiar with separation logic and we only give an

informal explanations of its semantics. For simplicity, we only introduce partial separation logic primitives: the atomic

formula 𝑒 d 𝑒′ and critical operator ∗ for formulas, and the atomic statements 𝑥 := cons(𝑒), 𝑥 := [𝑒], [𝑒] := 𝑒′ and
disp(𝑒) for programs. We omit another critical operator −∗ in formulas and the compositional programs that vary from

case to case.

Below we follow some conventions of notations: Given a partial function 𝑓 : 𝐴 ↣ 𝐵, we use dom(𝑓) to denote the

domain of 𝑓 . For a set 𝐶 , partial function 𝑓 |𝐶 : 𝐴 ↣ 𝐵 is the function 𝑓 restricted on domain dom(𝑓) ∩𝐶 . 𝑓 [𝑥 ↦→ 𝑒]
represents the partial function that maps 𝑥 to 𝑒 , and maps the other variables in its domain to the same value as 𝑓 does.

Let V = Z∪Addr be the set of values, where Addr is a set of addresses. We assume Addr to be expressed with an infinite

set of integer numbers. In separation logic, a store 𝑠 : 𝑉 → V is a function that maps each variable to a value of V, a

heap ℎ : Addr ↣ V is a partial function that maps an address to a value of V, expressing that the value is stored in

a memory indicated by the address. dom(ℎ) is a finite subset of Addr. A state is a store-heap pair (𝑠, ℎ). The disjoint
relation ℎ1 ⊥ℎ2 is defined if dom(ℎ1) ∩ dom(ℎ2) = ∅.
Here we informally explain the semantics of each primitive. Given a state (𝑠, ℎ), statement 𝑥 := cons(𝑒) allocates a
memory addressed by a new integer 𝑛 in ℎ to store the value of expression 𝑒 (thus obtaining a new heap ℎ ∪ {(𝑛, 𝑠 (𝑒))}
where 𝑛 ∉ dom(ℎ)), and assigns 𝑛 to 𝑥 . Statement 𝑥 := [𝑒] assigns the value of the address 𝑒 in ℎ (i.e. ℎ(𝑠 (𝑒))) to variable
𝑥 . [𝑒] := 𝑒′ means to assign the value 𝑒′ to the memory of the address 𝑒 in ℎ (i.e. obtaining a new heap ℎ[𝑠 (𝑒) ↦→ 𝑠 (𝑒′)]).
disp(𝑒) means to de-allocate the memory of address 𝑒 in the heap (i.e. obtaining a new heap ℎ |dom(ℎ)\{𝑠 (𝑒) }). Formula

𝑒 d 𝑒′ means that value 𝑒′ is stored in the memory of address 𝑒 . Given a state (𝑠, ℎ), 𝑠, ℎ |= 𝑒 d 𝑒′ is defined if

ℎ(𝑠 (𝑒)) = 𝑠 (𝑒′). For any separation logical formulas 𝜙 and𝜓 , 𝑠, ℎ |= 𝜙 ∗𝜓 if there exist heaps ℎ1, ℎ2 such that ℎ = ℎ1 ∪ℎ2,
ℎ1 ⊥ℎ2, and 𝑠, ℎ1 |= 𝜙 and 𝑠, ℎ2 |=𝜓 .

Example C.1. Let (𝑠, ℎ) be a state such that 𝑠 (𝑥) = 3, 𝑠 (𝑦) = 4 and ℎ = ∅, then the following table shows the information

of each state about focused variables and addresses during the process of the following executions:

(𝑠, ℎ)
𝑥 :=cons(1)
−−−−−−−−→ (𝑠1, ℎ1)

𝑦:=cons(1)
−−−−−−−−→ (𝑠2, ℎ2)

[𝑦]:=37
−−−−−−→ (𝑠3, ℎ3)

𝑦:=[𝑥+1]
−−−−−−−→ (𝑠4, ℎ4)

disp(𝑥+1)
−−−−−−−→ (𝑠5, ℎ5) .

Store Heap

𝑠 𝑥 : 3, 𝑦 : 4 ℎ empty

𝑠1 𝑥 : 37, 𝑦 : 4 ℎ1 37 : 1

𝑠2 𝑥 : 37, 𝑦 : 38 ℎ2 37 : 1, 38 : 1

𝑠3 𝑥 : 37, 𝑦 : 38 ℎ3 37 : 1, 38 : 37

𝑠4 𝑥 : 37, 𝑦 : 37 ℎ4 37 : 1, 38 : 37

𝑠5 𝑥 : 37, 𝑦 : 37 ℎ5 37 : 1

Let 𝜙 =𝑑𝑓 (𝑥 d 1 ∗ 𝑦 d 1),𝜓 =𝑑𝑓 (𝑥 d 1 ∧ 𝑦 d 1), we have 𝑠2, ℎ2 |= 𝜙 and 𝑠2, ℎ2 |=𝜓 , 𝑠5, ℎ5 |=𝜓 , but 𝑠5, ℎ5 ̸ |= 𝜙 since

𝑥 and 𝑦 point to the single memory storing value 1.

Manuscript submitted to ACM

On A Parameterized Theory of Dynamic Logic for Operationally-based Programs 39

Γ ⇒ (𝑥 := cons(𝑒), (𝑠, ℎ)) −→ (↓, (𝑠 [𝑥 ↦→ 𝑛], ℎ ∪ {(𝑛, 𝑠 (𝑒))})),Δ
1 (cons)

, where 𝑛 is new w.r.t. ℎ

Γ ⇒ (𝑥 := [𝑒], (𝑠, ℎ)) −→ (↓, (𝑠 [𝑥 ↦→ ℎ(𝑠 (𝑒))], ℎ)),Δ
(𝑥 :=[𝑒])

Γ ⇒ ([𝑒] := 𝑒′, (𝑠, ℎ)) −→ (↓, (𝑠, ℎ[𝑠 (𝑒) ↦→ 𝑠 (𝑒′)])),Δ
([𝑒]:=𝑒′)

Γ ⇒ (disp(𝑒), (𝑠, ℎ)) −→ (↓, (𝑠, ℎ |dom(ℎ)\{𝑠 (𝑒) })),Δ
(disp)

Table 8. Partial Rules of (Prop)SP for Program Transitions of Atomic Statements in Separation Logic

Encoding of Separation Logic in DL𝔭. In DL𝔭, let PSP and FSP be the set of programs and formulas of separation

logic. In the PLK structure KSP = (SSP,−→SP,ISP) of separation logic, SSP = {(𝑠, ℎ) | 𝑠 : 𝑉 → V, ℎ : Addr ↣ V}, ISP
interprets each formula of FSP as explained above. We directly choose the store-heap pairs as the configurations of

separation logic named LSP. In this case, we simply letM =𝑑𝑓 {𝜏}, where 𝜏 : LSP → SSP is a constant mapping satisfying

that 𝜏 ((𝑠, ℎ)) =𝑑𝑓 (𝑠, ℎ) for any (𝑠, ℎ) ∈ SSP. Table 8 lists the rules for the program transitions of the atomic statements

in (Prop)SP.
To further derive the formulas like 𝜙 ∗𝜓 in FSP into simpler forms, additional rules apart from 𝑃𝑟ldlp need to be proposed.

For example, we can propose a rule

Γ ⇒ ℎ1⊥ℎ2,Δ Γ ⇒ (𝑠, ℎ1) : 𝜙,Δ Γ ⇒ (𝑠, ℎ2) : 𝜓,Δ
Γ ⇒ (𝑠, ℎ1 ∪ ℎ2) : 𝜙 ∗𝜓,Δ

(𝜎∗)

to decompose the heap ℎ1 ∪ ℎ2 and the formula 𝜙 ∗𝜓 , or a frame rule

Γ ⇒ (𝑠, ℎ) : 𝜙,Δ
Γ ⇒ (𝑠, ℎ) : 𝜙 ∗𝜓,Δ

(𝜎Frm) , if no variables of dom(ℎ) appear in𝜓,

to just decompose the formula 𝜙 ∗𝜓 . These rules are inspired from their counterparts for programs in separation logic.

In practice, the labels can be more explicit structures than the store-heap pairs shown here. Similar encoding can be

obtained accordingly. From this example, we envision that the entire theory of separation logic can be embedded into

DL𝔭, where additional rules like the above ones support a “configuration-level reasoning” of separation-logic formulas.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 An Overview
	2.1 Labeling and Parameterization of Dynamic Logic
	2.2 Lifting Process and Compatibility of DLp
	2.3 Cyclic Reasoning of DLp Formulas
	2.4 Soundness and Completeness of DLp
	2.5 Main Contributions & Content Structure

	3 Prerequisites : PDL & FODL
	4 Dynamic Logic DLp
	4.1 Syntax and Semantics of DLp Formulas
	4.2 Labeled DLp Formulas

	5 A Cyclic Proof System for DLp
	5.1 Labeled Sequent Calculus
	5.2 Proofs & Preproofs & Cyclic Proofs
	5.3 A Proof System for DLp
	5.4 Construction of a Cyclic Proof Structure for DLp
	5.5 Lifting Rules From Dynamic Logic Theories

	6 Case Studies
	6.1 A Cyclic Deduction of A While Program
	6.2 Lifting Rules From FODL
	6.3 Instantiation of DLp in FODL Theory
	6.4 An Encoding of Process Logic in DLp

	7 Analysis of Soundness and Completeness of DLp
	7.1 Conditional Soundness of DLp
	7.2 Conditional Completeness of DLp

	8 Related Work
	9 Conclusion & Future Work
	References
	A Other Propositions and Proofs
	B A Cyclic Deduction of An Esterel Program
	B.1 An Esterel Program in DLp
	B.2 Prior Program Transformations in Esterel Programs
	B.3 Instantiation of DLp in Esterel Programs
	B.4 A Cyclic Deduction of Program E

	C An Encoding of Separation Logic in DLp

